• Title/Summary/Keyword: Aeronautical Product

Search Result 38, Processing Time 0.023 seconds

Development of an Automatic Cap Opening And Closing Device for Unmanned Chemical Manufacturing Processes (화학제조공정의 무인화를 위한 자동 캡 개폐장치 개발)

  • Jun-Sik Lee;Oh-Seong Kwon;Jun-Ho Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2024
  • Automatic production systems are constantly advancing technologies to improve productivity and safety. Specifically, liquid filling machines are primarily utilized to package products into drums after manufacturing process in the hazardous chemical industry. Most existing filling machines allow the operator to open the drum cap and inject the product directly or semi-automation. In this study, we have developed a cap opening and closing mechanism onto the existing drum filling machine, enabling automatic and safe cap manipulation while filling the product in the IBC tank. By applying the appropriate torque value through numerical analysis, we confirmed that the system worked without any problems during the process of opening and closing the cap. Therefore, it is expected that the developed machine will give more production and reduce human efforts without risk in the chemical packaging industry.

Radial Type Satellite Attitude Controller Design using LMI Method and Robustness Analysis (LMI 방법을 이용한 방사형 인공위성 제어로직 설계 및 강건성 분석)

  • Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.998-1007
    • /
    • 2015
  • The $H_{\infty}$ control theory using LMI method is applied to design an attitude controller of radial type satellite that has strongly coupled channels due to the large product of inertia. It is observed that the cross-over frequency of open-loop with $H_{\infty}$ controller is lower than that of open-loop without controller, which is not typical phenomenon in an optimal control design result: it is interpreted that due to a large product of inertia, there is certain limit in increasing agility of satellite by just tuning weighting function. ${\mu}$-analysis is performed to verify the stability and performance robustness with the assumption of +/-5% MOI variation. ${\mu}$-analysis result shows that the variation of principal MOI degrades the stability and performance robustness more than the variation of POI does.

Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method (베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정)

  • Park, Cheongeon;Lim, Jisung;Lee, Sangchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.747-752
    • /
    • 2019
  • By using the failure information and the cumulative test execution time obtained by performing the reliability growth test, it is possible to estimate the parameter of the reliability growth model, and the Mean Time Between Failure (MTBF) of the product can be predicted through the parameter estimation. However the failure information could be acquired periodically or the number of sample data of the obtained failure information could be small. Because there are various constraints such as the cost and time of test or the characteristics of the product. This may cause the error of the parameter estimation of the reliability growth model to increase. In this study, the Bayesian method is applied to estimating the parameters of the reliability growth model when the number of sample data for the fault information is small. Simulation results show that the estimation accuracy of Bayesian method is more accurate than that of Maximum Likelihood Estimation (MLE) respectively in estimation the parameters of the reliability growth model.

Range Alignment Measurement for Satellite Antenna by Using Theodolite System (데오드라이트 시스템을 이용한 위성 안테나 레인지 얼라인먼트 측정)

  • Park, Hong-Cheol;Son, Yeong-Seon;Yun, Yong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.134-141
    • /
    • 2004
  • The three-dimensional precision measurement technology for industrial product of middle and/or large scale has been developed. Theodolite measurement system which is one of the technology is widely used in aerospace industry. This paper describes a range alignment method of parabolic antenna to RF probe in the near field range by using the theodolite system, The range alignments of the Ku-band and Ka-band antennas have been accomplished within the requirements, ${\pm}1mm\;and\;{\pm}0.05^{\circ}$.

Development of SAR Image Quality Performance Analysis Tool for High Resolution Spaceborne Synthetic Aperture Radar (고해상도 위성 SAR 영상품질 성능 분석 툴 개발)

  • Oh, Tae-Bong;Jung, Chul-Ho;Song, Sun-Ho;Shin, Jae-Min;Kwag, Young-Kil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.188-194
    • /
    • 2010
  • In this paper, the typical Synthetic Aperture Radar (SAR) image quality parameters and analysis method are defined, and the SAR image analysis tool is presented for SAR image evaluation. The structure of the developed SAR image analysis tool consists of four key modules; point target analysis (PTA) module, distributed target analysis (DTA) module, ambiguity analysis (AMA) module, and NESZ analysis (NESZA) module. The developed tool is able to extract the various SAR system parameters from standard SAR product format files. Based on these extracted system parameters, typical SAR image quality parameters are derived from SAR image data.

Adaptive Mesh Refinement Using Viscous Adjoint Method for Single- and Multi-Element Airfoil Analysis

  • Yamahara, Toru;Nakahashi, Kazuhiro;Kim, Hyoungjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.601-613
    • /
    • 2017
  • An adjoint-based error estimation and mesh adaptation study is conducted for two-dimensional viscous flows on unstructured hybrid meshes. The error in an integral output functional of interest is estimated by a dot product of the residual vector and adjoint variable vector. Regions for the mesh to be adapted are selected based on the amount of local error at each nodal point. Triangular cells in the adaptive regions are refined by regular refinement, and quadrangular cells near viscous walls are bisected accordingly. The present procedure is applied to single-element airfoils such as the RAE2822 at a transonic regime and a diamond-shaped airfoil at a supersonic regime. Then the 30P30N multi-element airfoil at a low subsonic regime with a high incidence angle (${\alpha}=21deg.$) is analyzed. The same level of prediction accuracy for lift and drag is achieved with much less mesh points than the uniform mesh refinement approach. The detailed procedure of the adjoint-based mesh refinement for the multi-element airfoil case show that the basic flow features around the airfoil should be resolved so that the adjoint method can accurately estimate an output error.

Aeronautical Telemetry Link Development for High Speed Data Transmission (고속 자료전송을 위한 비행체용 원격측정링크 개발)

  • Lee, Sangbum;Choi, Seoungduck;Kim, Whanwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.43-51
    • /
    • 2013
  • This paper describes the development of the telemetry link system for the high data rate transmission in high speed rocket application. In consideration of bandwidth efficiency, frequency selective fading and doppler frequency offset, we used DQPSK instead of PCM/FM which has been the primary modulation format in aeronautical telemetry. Also we used the spatial diversity with multiple receiving antennas to mitigate multipath interference which is the dominant channel impairment and the Turbo Product Code for Forward Error Correction to improve bit error rate performance.

Prediction of Spring-in of Curved Laminated Composite Structure (굴곡 형상 복합재 구조물의 스프링-인 예측)

  • Oh, Jae-Min;Kim, Wie-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • This paper predicts the spring-in effect of curved laminated composite structure for various stacking sequence using finite element analysis(ABAQUS). In composite manufacturing process, large temperature difference, different coefficient of thermal expansion and chemical shrinkage effect cause distortion of composite parts such as spring-in and warpage. Distortion of composite structure is important issue on quality of product, and it should be considered in manufacturing process. In finite element analysis, a CHILE(Cure Hardening Instantaneously Linear Elastic) model and chemical shrinkage effects are considered developing user subroutine in ABAQUS and some cases are simulated.

Quality Efficiency Evaluation of small and medium defense suppliers by utilizing DEA - Focusing on Aeronautical Field - (DEA를 활용한 방위산업 중소협력업체 품질효율성 분석 -항공분야를 중심으로-)

  • Choi, Jae-Ho;Park, Sung-Jae;Choi, Hyoung-Jun;Ji, Sang-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.60-68
    • /
    • 2020
  • Owing to the complexity and modernization of weapon systems, the role of the defense industry in producing military companies has become increasingly important. In the past defense industries, price competitiveness is a key factor in product choice. On the other hand, product quality is becoming increasingly important compared to price competitiveness. In particular, improving the quality efficiency of small and medium defense suppliers is a necessary part of realizing completed weapon systems, and measures are required to evaluate the quality efficiency of small and medium defense suppliers objectively. This study measured the efficiency of quality using DEA, which is one of the decision methodologies. To use DEA, the number of employees (QA Team) and the number of improvement requirements (Through the activity of onsite quality-support team in aeronautical system center) were set as the input variables. In addition, the output variables were based on sales and the number of certification acquisitions (QMS). To analyze the quality efficiency of small and medium defense suppliers in the aeronautical field, both CCR and BCC models were analyzed, and the scale efficiency values were derived. Strategic development plans for small and medium defense suppliers can be guided using the research results.

'Plastic' Axial Flux Machines: Design and Prototyping of a Multi-Disc PM Synchronous Motor for Aircraft Applications

  • Cerchio M.;Griva G.;Profumo F.;Tenconi A.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.207-214
    • /
    • 2005
  • After more than 100 years of development, rotating electric machines are a mature industrial product. Nevertheless, improvements are still possible for specific applications, and it is likely that the major evolution will be promoted by new materials and unconventional structures. Till now, plastic materials are an infrequent choice for the electric machines structural parts, but pioneering applications, such as aeronautical components, let some technological scouting: a low-weight/high-efficiency plastic axial flux motor for a solar flying platform is presented as an example of combined new-material/new-geometry development. The basic design aspects and the prototyping choices are presented and discussed together with the first experimental results.