• Title/Summary/Keyword: Aerodynamics performance

Search Result 132, Processing Time 0.021 seconds

Papers : Transonic Wing Planform Design Using Multidisciplinary Optimization (논문 : 다분야 통합 최적설계 기법을 이용한 날개 기본 형상 설계)

  • Im,Jong-U;Gwon,Jang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.20-27
    • /
    • 2002
  • Aircraft design requires the intergration of several disciplines, inculding aerodynamics, structures, controls. To achieves advances in performance, each technology, or discipline must be more accurate in analysis and must be more highly intergrated. One of the important interdisciplinary interactions in mordern aircraft design is that of aerodynamics and structures. In this study, for increasing accuracy in each discipline's analysis, CFD for aerodynamic analysis and FEM for structurral analysis was used and, for considering important interdisciplinary interactions, aeroelastic effect was considered. As optimization algorithm, PBIL algorithm was used for global optima and was parallelized to alleviate the computational burden. The efficiency and accuracy of the present method was assesed by range maximiziation of reference of reference wing.

Low RCS Characteristics of an Elliptical Ogive Head (타원형 Ogive 형상을 가지는 헤드의 Low RCS 특성)

  • 심재륜;한대현;김효태
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.263-266
    • /
    • 2000
  • An elliptical ogive head for a generic missile is proposed to reduce its detectable probability from a ground defense radar. Numerical RCS results of a generic missile with an elliptical ogive head are evaluated using the GTD/UTD (Geometrical Theory of Diffraction/Uniform GTD). The results are compared with those of a cylindrical ogive head. In the sense of aerodynamics, the Performance evaluation of an elliptical ogive head for a generic missile should be followed.

  • PDF

Wind design spectra for generalisation

  • Martinez-Vazquez, P
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.155-163
    • /
    • 2020
  • Previous research has shown that wind acceleration components produce a signal that can vibrate single-degree of-freedom oscillators, whose dynamic responses enable to configure design spectra for structures subject to wind. These wind design spectra present an alternative method for evaluating the dynamic response of structures and are a suitable tool for running modal analyses. Here, a generalised method for producing wind design spectra is proposed. The method consists of scaling existing spectra to adjust to a wider range of building properties and terrain conditions. The modelling technique is tested on a benchmark building to prove that its results are consistent with experimental evidence reported in the past.

Multi-copter Wind-tunnel Test (멀티콥터 풍동시험)

  • Hwang, SeungJae;Cho, TaeHwan;Kim, YangWon;Chung, JinDeog
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.10-16
    • /
    • 2017
  • In order to improve the safety of the multi-copter, Korea Aerospace Research Institute (KARI) performed a wind-tunnel test using an octocopter with the maximum takeoff weight (MTOW) of 28 kg. The wind-tunnel test was performed with three different RPM ranges, 3,500, 4,500 and 5,500 rpm, and three different wind speeds, 3.5, 5 and 7 m/sec. The tested range of the angle of attacks was $-40^{\circ}$ to $20^{\circ}degree$ and ${\pm}90^{\circ}degree$. Vortex ring state (VRS) of the tested multi-copter was located around the vertical descending speed of 6 m/sec and the decrement of thrust was about 13 % at the time of testing. Compared with the single propeller wind-tunnel test result, the propeller efficiency of the octocopter dropped to 10 to 15% depending on the propeller RPM. It is hypothesized that the obtained aerodynamic characteristics by the wind-tunnel test will be used to improve the performance and wind resistance of the multi-copter.

Aerodynamic Performance Analysis of a Shrouded Rotor Using an Unstructured Mesh Flow Solver

  • Lee H. D.;Kwon O. J.;Joo J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.263-265
    • /
    • 2003
  • The aerodynamic performance of a shrouded tail rotor in hover has been studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell­centered finite-volume discretization and an implicit Gauss-Seidel time integration. The results show that the performance of an isolated rotor without shroud compares well with experiment. In the case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

  • PDF

An Integrated Scientific Workflow Environment over Multiple Infrastructures for Engineering Education of Aerodynamics (다중 인프라 기반의 공력 설계 교육을 위한 과학 워크플로우 통합 환경)

  • Kim, Seoyoung;Kang, Hyejeong;Kim, Yoonhee;Kim, Chongam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.234-240
    • /
    • 2013
  • All around the world, numerous scientists have been carried out researches of e-Science to improve performance of computations and accessibility of their experimental flexibilities for a long times. However, they still have been in difficulty securing high-performance computing facilities. In case of Aerodynamics, for example, a single experiment costs a tremendous amount of budget and requires a span of more than 6 months even though researchers have been developed diverse improved mathematical methods as well as relied on advanced computing technologies to reduce runtime and costs. In this paper, we proposed a multiple infrastructure-based scientific workflow environments for engineering education in fields of design optimization of aircraft and demonstrated the superiority. Since it offers diverse kind of computing resources, it can offer elastic resources regardless of the number of tasks for experiments and limitations of spaces. Also, it can improve education efficiency by using this environment to engineering education.

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

Influence of Rotating Wheel and Moving Ground Condition to Aerodynamic Performance of 3-Dimensional Automobile Configuration (돌아가는 바퀴 및 이동지면 조건이 3차원 자동차 형상의 공력성능에 미치는 영향에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Hoon-Il;Ku, Yo-Cheon;Kee, Jung-Do;Hong, Dong-Hee;Kim, Kyu-Hong;Lee, Dong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.100-107
    • /
    • 2010
  • This paper gives new conceptual descriptions of drag reduction mechanism owing to rotating wheel and moving ground condition when dealing with automotive aerodynamics. Using Computational Fluid Dynamics (CFD), flow simulation of three dimensional automobile configuration made by Vehicle Modeling Function (VMF) is performed and the influence of wheel arch, wheels, rotating wheel & moving ground condition to the automotive aerodynamic performance is analyzed. Finally, it is shown that rotating wheel & moving ground condition decreases automotive aerodynamic drag owing to the reduction of the induced drag led by the decrease of COANDA flow intensity of the rear trunk flow.

Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle (중형 차량의 외부 유동특성에 관한 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

Study on the Influence of Wheel Arches, Wheels, and Side Mirrors on Aerodynamic Performance of a Fast Cruising Passenger Car (고속 주행 시 Wheel Arch, Wheel & Side Mirror가 자동차의 공력성능에 미치는 영향에 관한 연구)

  • Song, Ki-Sun;Kang, Seung-On;Park, Hoon-Il;Kee, Jung-Do;Kim, Kyu-Hong;Lee, Dong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.26-35
    • /
    • 2012
  • This paper investigates the influence on the aerodynamic performance of a passenger cruising very fast by some specific car body parts such as side mirrors, wheel arches and wheels designed hardly regarding aerodynamics. The magnitude of the contribution of each part is analyzed via on the CFD simulations. YF SONATA, a sedan of Hyundai Motors Company, plays a major role as the baseline car in this research, representing all passenger car. The CFD analysis condition consists of 6 different cases depending on whether each part exists or not. According to the CFD results, there were confirmed that additionally to the body parts' own drag, the car body went through somewhat the consequential increment of the drag by them. Among the 3 parts, wheel is the magnate that not only has the maximal drag but drives the drag of the passenger car to increase most steeply and the next is the side mirror.