• Title/Summary/Keyword: Aerodynamic sound

Search Result 127, Processing Time 0.023 seconds

Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유동소음의 수치계산)

  • 강호근;김은라
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.

An experimental study for noise reduction of the cross-flow fan of the room air-conditioners (에어컨용 직교류홴의 저소음화를 위한 실험적 연구)

  • 구형모
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.871-879
    • /
    • 1999
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectrums of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared of the experimental rig with and without the bounding fence for various flow rates.

  • PDF

Direct Simulation of Edge Tones by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 Edge음의 직접계산)

  • Kang, Ho-Keun;Kim, Yu-Taek;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.671-677
    • /
    • 2003
  • Two-dimensional direct numerical simulation of the edge-tones by the finite difference lattice Boltzmann method (FDLBM) is presented. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. It is clarified that the sound wave generated in rather wide region and individual vortices do not affect the sound wave propagation.

  • PDF

Aeroacoustic Characteristics and Noise Reduction of a Centrifugal Fan for a Vacuum Cleaner

  • Jeon, Wan-Ho;Rew, Ho-Seon;Kim, Chang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.185-192
    • /
    • 2004
  • The aeroacoustic characteristics of a centrifugal fan for a vacuum cleaner and its noise reduction method are studied in this paper. The major noise source of a vacuum cleaner is the centrifugal fan. The impeller of the fan rotates at over 30000 rpm, and generates very high-level noise. It was revealed that the dominant noise source is the aerodynamic interaction between the rotating impeller and stationary diffuser. The directivity of acoustic pressure showed that most of the noise propagates backward direction of the fan-motor assembly. In order to reduce the high tonal sound generated from the aerodynamic interaction, unevenly pitched impeller and diffuser, and tapered impeller designs were proposed and experiments were performed. Uneven pitch design of the impeller changes the sound quality while the overall sound power level (SPL) and the performance remains similar. The effect of the tapered design of impeller was evaluated. The trailing edge of the tapered fan is inclined. This reduces the flow interaction between the rotating impeller and the stationary diffuser because of some phase shifts. The static efficiency of the new impeller design is slightly lower than the previous design. However, the overall SPL is reduced by about 4 dB(A). The SPL of the fundamental blade passing frequency (BPF) is reduced by about 6 dB (A) and the 2$\^$nd/ BPF is reduced about 20 dB (A). The vacuum cleaner with the tapered impeller design produces lower noise level than the previous one, and the strong tonal sound was dramatically reduced.

Control of Sound Pressure inside a Flow Excited Cavity by Regulation of Vorticity Shedding (와류진동 조절에 의한 유동가진 공동 내부의 음압 제어)

  • Park, Jong-Beom;Hwang, Cheol-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1223-1229
    • /
    • 2007
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the leading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

Control of Sound Pressure Inside a Flow Excited Resonator (유동가진 공명기 내부의 음압 제어)

  • Hwang, Cheol-Ho;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.196-199
    • /
    • 2005
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the loading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

  • PDF

Analysis of Aerodynamic Noise Generation from Pantograph Using Panhead Models of Simple-Geometry and Its Reduction (팬헤드의 단순 형상 모델을 이용한 판토그라프 공력소음 발생 특성 분석 및 저감 방안)

  • Yi, Suk-Keun;Yang, Won-Seok;Koh, Hyo-In;Park, Junhong
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.531-536
    • /
    • 2012
  • This study presents a result on aero-acoustic characteristics of pantograph panheads. To analyze the fluid flow around the panhead and resulting sound radiation, simple models of panhead were used in the numerical simulations called Lattice-Boltzmann method. The simulation results were verified using the wind tunnel test. The main aerodynamic noise was generated from the vortex shedding which is characterized by the Strouhal number, flow speed and geometry. The reduction in the radiated noise with simultaneously achieving increased lifting force was implemented for the simple rectangular geometry used in this study. Also, it was shown that the radiated sound power was significantly reduced by minimizing vortex shedding using through-holes or streamline shapes.

An Aerodynamic study used aerophone II for snoring patients (코콜이 환자의 sleep splint 착용 전후의 음향학적 및 공기역학적 연구)

  • Jung, Se-Jin;Kim, Hyun-Gi;Shin, Hyo-Keun
    • The Journal of the Korean dental association
    • /
    • v.49 no.4
    • /
    • pp.219-226
    • /
    • 2011
  • Snoring and obstructive sleep apnea (OSA) are common sleep disordered breathing conditions. Habitual snoring is caused by a vibration of soft tissue of upper airway while breath in sleeping, and obstructive sleep apnea is caused by the repeated obstructions of airflow for a sleeping, specially airflow of pharynx. Researchers have shown that snoring is the most important symptom connected with the obstructive sleep apnea syndrome The treatment is directed toward improving the air flow by various surgical and nonsurgical methods. The current surgical procedures used are uvulopalatopharyngoplasty(UPPP), orthognathic surgery, nasal cavity surgery. Among the nonsurgical methods there are nasal continuous positive air pressure(CPAP), pharmacologic therapy. weight loss in obese patient, oral appliance(sleep splint). Sleep splint brings the mandible forward in order to increase upper airway volume and prevents total upper airway collapse during sleep. However, the precise mechanism of action is not yet completely understood, especially aerodynamic factor. The aim of this study evaluated the effect of conservative treatment of snoring and OSAS by sleep splint through measured aerodynamic change by an aerophone II. We measured a airflow, sound pressure level, duration, mean power from overall airflow by aerophone II mask. The results indicated that on a positive correlation between a decrease in maximum airflow rate and a decrease in maximum sound pressure level, on a negative correlation between a decrease in maximum airflow rate and a increase in duration.

Prediction of Wind Farm Noise with Atmospheric Stability (대기 안정 상태에 따른 풍력 단지 소음 전파 예측)

  • Son, Eunkuk;Lee, Seunghoon;Jeon, Minu;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.

  • PDF