• Title/Summary/Keyword: Aerodynamic interference

Search Result 78, Processing Time 0.023 seconds

Two-Dimensional Moving Blade Row Interactions in a Stratospheric Airship Contra-Rotating Open Propeller Configuration

  • Tang, Zhihao;Liu, Peiqing;Guo, Hao;Yan, Jie;Li, Guangchao
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.500-509
    • /
    • 2015
  • The numerical simulation of two-dimensional moving blade row interactions is conducted by CFD means to investigate the interactions between the front and rear propeller in a stratospheric airship contra-rotating open propeller configuration caused by different rotational speeds. The rotational speed is a main factor to affect the propeller Reynolds number which impact the aerodynamic performance of blade rows significantly. This effect works until the Reynolds number reaches a high enough value beyond which the coefficients become independent. Additionally, the interference on the blade row has been revealed by the investigation. The front blade row moves in the induced-velocity field generated by the rear blade row and the aerodynamic coefficients are influenced when the rear blade row has fast RPMs. The rear blade row moving behind the front one is affected directly by the wake and eddies generated by the front blade row. The aerodynamic coefficients reduce when the front blade row has slow RPMs while increase when the front blade row moves faster than itself. But overall, the interference on the front blade row due to the rear blade row is slight and the interference on the rear blade row due to the front blade row is much more significant.

Numerical analysis of interference galloping of two identical circular cylinders

  • Blazik-Borowa, E.;Flaga, A.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.243-253
    • /
    • 1998
  • The paper deals with numerical analysis of interference galloping of two elastically supported circular cylinders of equal diameters. The basis of the analysis is quasi-steady model of this phenomenon. The model assumes that both cylinders participate in process of interference galloping and they have two degrees of freedom. The movement of the cylinders is written as a set of four nonlinear differential equations. On the basis of numerical solutions of this equations the authors evaluate the correctness of this quasi-steady model. Then they estimate the dependence of a critical reduced velocity on the Scruton number, turbulence intensity and arrangements of the cylinders.

Interference loads of two cylinders in a side-by-side arrangement

  • Blazik-Borowa, Ewa
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.75-93
    • /
    • 2006
  • This paper presents a quasi-steady model of vibrations of two cylinders in a side-by-side arrangement. The cylinders have flexible support and equal diameters. The model assumes that both cylinders participate in the process of vibration, each of them having two degrees of freedom. The movement of cylinders is described by a set of four non-linear differential equations. These equations are evaluated on the basis of a numerical simulation and experimental data. Moreover many features of cylinder vibrations are found from numerical results and are described in this paper.

Aerodynamic Performance Dependency on the Geometric Shape and Mounting Location of OSRVM (OSRVM의 형상 및 장착 위치가 차량의 공력성능에 미치는 영향)

  • Han, Hyun Wook;Park, Hyun Ho;Kim, Moon Sang;Ha, Jong Paek;Kim, Yong Nyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.30-42
    • /
    • 2013
  • This study investigates the effects of OSRVM mounting location and its configurations such as stalk height and housing height on the aerodynamic performance of the passenger car. In order to validate the flow solver, FLUENT which is very well known commercial code, the flow field around an Ahmed Body was analyzed numerically and compared with the experimental data. The predicted aerodynamic performance and flow patterns around a car show good agreements with the experimental data. Mounting location and stalk height should be designed while OSRVM is mounted on the car to evaluate the aerodynamic performance precisely. Housing height, however, may be designed independent of the car because the aerodynamic interference between housing height and car configuration is negligible.

Measurement of aerodynamic coefficients of tower components of Tsing Ma Bridge under yaw winds

  • Zhu, L.D.;Xu, Y.L.;Zhang, F.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.53-70
    • /
    • 2003
  • Tsing Ma Bridge in Hong Kong is the longest suspension bridge in the world carrying both highway and railway. It has two H-shape concrete towers, each of which is composed of two reinforced concrete legs and four deep transverse prestressed concrete beams. A series of wind tunnel tests have been performed to measure the aerodynamic coefficients of the tower legs and transverse beams in various arrangements. A 1:100 scaled 3D rigid model of the full bridge tower assembled from various tower components has been constructed for different test cases. The aerodynamic coefficients of the lower and upper segments of the windward and leeward tower legs and those of the transverse beams at different levels, with and without the dummy bridge deck model, were measured as a function of yaw wind angle. The effects of wind interference among the tower components and the influence of the bridge deck on the tower aerodynamic coefficients were also investigated. The results achieved can be used as the pertinent data for the comparison of the computed and field-measured fully coupled buffeting responses of the entire bridge under yaw winds.

NUMERICAL INVESTIGATION OF SHOCK-BUFFET ON TRANSPORT AIRCRAFT WITH CHANGING THE POSITION OF NACELLE/PYLON (항공기 Nacelle/pylon 위치에 따른 Shock-Buffet 현상의 수치적 연구)

  • Kim, S.H.;Yee, K.J.;Oh, S.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.69-76
    • /
    • 2014
  • The shock buffet on a transonic transport aircraft are negative factors that reduce the aerodynamic performance of aircraft. The parametric studies were performed for position of nacelle/pylon to estimate the trend of flow mechanism under the wing that affects shock buffet. To generate external mesh of aircraft configuration that change the position of nacelle, snappyHexMesh provided in OpenFOAM was applied. Implicit density-based solver(ISAAC) was used for flow analysis. The change of nacelle position along horizontal direction dynamically affected the aerodynamic performance of transonic transport aircraft as comparing that of vertical direction. As a result of the parametric study of nacelle/pylon position, it was confirmed that the optimal position of nacelle can be obtained by aerodynamic design.

The aerodynamic characteristics of twin column, high rise bridge towers

  • Ricciardelli, Francesco;Vickery, Barry J.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.225-241
    • /
    • 1998
  • The high-rise supporting towers of long-span suspension and cable-stayed bridges commonly comprise a pair of slender prisms of roughly square cross-section with a center-to-centre spacing of from perhaps 2 to 6 widths and connected by one or more cross-ties. The tower columns may have a constant spacing as common for suspension bridges or the spacing may reduce towards the top of the tower. The present paper is concerned with the aerodynamics of such towers and describes an experimental investigation of the overall aerodynamic forces acting on a pair of square cylinders in two-dimensional flow. Wind tunnel pressure measurements were carried out in smooth flow and with a longitudinal intensity of turbulence 0.10. Different angles of attack were considered between $0^{\circ}$ and $90^{\circ}$, and separations between the two columns from twice to 13 times the side width of the column. The mean values of the overall forces proved to be related to the bias introduced in the flow by the interaction between the two cylinders; the overall rms forces are related to the level of coherence between the shedding-induced forces on the two cylinders and to their phase. Plots showing the variation of the force coefficients and Strouhal number as a function of the separation, together with the force coefficients spectra and lift cross-correlation functions are presented in the paper.

The Flow Characteristics around Circular Cylinder of Pressure Interference with Slits (표면압력이 상호 간섭되는 슬릿을 가진 원주의 후류 유동 특성)

  • 부정숙;김진석;류병남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.736-744
    • /
    • 2003
  • This study is conducted to investigate aerodynamic forces and wake structures about the pressure interference of a circular cylinder with slits. An experimental investigation of a circular cylinder with slits is carried out in uniform flow in the range of Reynolds number from 8,000 to 32,000 using X-type hot wire. Flow visualization is executed by smoke-wire method to understand the mechanism of these vortex formation process. Inspection in the wake at X/D=5.5 of the cylinder with the slits suggested that a strong vortex-shedding pattern for these cylinders is revealed compare with a circular cylinder without slits. It is found that the rolling up position of shear layer of the cylinder with slits is shorten compare with a circular cylinder without slits.

Aerodynamic properties of a streamlined bridge-girder under the interference of trains

  • Li, Huan;He, Xuhui;Hu, Liang;Wei, Xiaojun
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.177-191
    • /
    • 2022
  • Trains emerging on a streamlined bridge-girder may have salient interference effects on the aerodynamic properties of the bridge. The present paper aims at investigating these interferences by wind tunnel measurements, covering surface pressure distributions, near wake profiles, and flow visualizations. Experimental results show that the above interferences can be categorized into two primary effects, i.e., an additional angle of attack (AoA) and an enhancement in flow separation. The additional AoA effect is demonstrated by the upward-moved stagnation point of the oncoming flow, the up-shifted global symmetrical axis of flow around the bridge-girder, and the clockwise-deflected orientation of flow approaching the bridge-girder. Due to this additional AoA effect, the two critical AoAs, where flow around the bridge-girder transits from trailing-edge vortex shedding (TEVS) to impinging leading-edge vortices (ILEV) and from ILEV to leading-edge vortex shedding (LEVS) of the bridge-girder are increased by 4° with respect to the same bridge-girder without trains. On the other hand, the underlying flow physics of the enhancement in flow separation is the large-scale vortices shedding from trains instead of TEVS, ILEV, and LEVS governed the upper half bridge-girder without trains in different ranges of AoA. Because of this enhancement, the mean lift and moment force coefficients, all the three fluctuating force coefficients (drag, lift, and moment), and the aerodynamic span-wise correlation of the bridge-girder are more significant than those without trains.

Aerodynamic Characteristics of Giromill with High Solidity (높은 솔리디티를 갖는 자이로밀의 공기역학적 특성)

  • Lee, Ju-Hee;Yoo, Young-So
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1273-1283
    • /
    • 2011
  • A 3-dimensional unsteady numerical analysis has been performed to evaluate the aerodynamic characteristics of a Giromill. Generally, the structure of a Giromill is simple and therefore easy to develop. In addition, the high solidity of the Gironmill helps improve the self-starting capacity at a low tip speed ratio (TSR). However, contrary to the Darrieus wind turbine which has a TSR of 4-7, a Giromill has a low TSR of 1-3. In this study, the aerodynamic characteristics of the Giromill are investigated using computational fluid dynamics (CFD). Three straight-bladed wings are used, and the solidity of the Giromill is 0.75. In contrast to a Darrieus wind turbine having low solidity, the Giromill shows a sudden decrease in the aerodynamic performance because of the interference between the wings and an increase in the drag on the wings in the downstream direction where wind flow is significantly reduced. Consequently, the aerodynamic performance decreased at a TSR value lower than 2.4.