• 제목/요약/키워드: Aerodynamic interference

검색결과 78건 처리시간 0.017초

Numerical Investigation of Jet Interaction for Missile with Continuous Type Side Jet Thruster

  • Kang, Kyoung Tai;Lee, Eunseok;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.148-156
    • /
    • 2015
  • A continuous type side jet controller which has four nozzles with thrust control devices was considered. It is deployed to a missile for high maneuverability and fast controllability in the terminal guidance phase. However, it causes more complex aerodynamic jet interactions between the side jet and the supersonic free stream than does the conventional impulse type side jet with a small single thruster. In this paper, a numerical investigation of the jet interference effects for the missile equipped with a continuous type side jet thruster is presented. A three-dimensional flow field was simulated by using a commercial unstructured-based CFD solver. The numerical simulation method was validated through comparison with wind tunnel test results for the single jet. The method of defining jet direction for this type of side jet control to minimize simulation cases was also introduced. Flow fields investigation and jet interaction effects for various flow conditions, jet pressure ratios and defined jet direction conditions were performed. From the numerical simulation for the continuous type side jet, extensive aerodynamic interference data were obtained to construct an aerodynamic coefficients database for precise missile control.

Numerical Investigation of Aerodynamic Interference in Complete Helicopter Configurations

  • Lee, Hee-Dong;Yu, Dong-Ok;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.190-199
    • /
    • 2011
  • Unsteady flow simulations of complete helicopter configurations were conducted, and the flow fields and the aerodynamic interferences between the main rotor, fuselage, and tail rotor were investigated. For these simulations, a three-dimensional flow solver based on unstructured meshes was used, coupled with an overset mesh technique to handle relative motion among those components. To validate the flow solver, calculations were made for a UH-60A complete helicopter configuration at high-speed and low-speed forward flight conditions, and the unsteady airloads on the main rotor blade were compared to available flight test data and other calculated results. The results showed that the fuselage changed the rotor inflow distribution in the main rotor blade airloads. Such unsteady vibratory airloads were produced on the fuselage, which were nearly in-phase with the blade passage over the fuselage. The flow solver was then applied to the simulation of a generic complete helicopter configuration at various flight conditions, and the results were compared with those of the CAMRAD-II comprehensive analysis code. It was found that the main rotor blades strongly interact with a pair of disk-vortices at the outer edge of the rotor disk plane, which leads to high pulse airloads on the blade, and these airloads behave differently depending on the specific flight condition.

헬리콥터 전기체에서 발사되는 유도무기 공력 모사 (Aerodynamic Simulation of Air-Launched Missiles from a Complete Helicopter)

  • 이희동;권오준;이범석;노경호
    • 한국항공우주학회지
    • /
    • 제39권12호
    • /
    • pp.1097-1106
    • /
    • 2011
  • 제자리 비행하는 헬리콥터 전기체 형상으로부터 발사되는 유도무기 운동을 모사하기 위해 비정렬 중첩격자기법을 6자유도 운동 기법과 연계하여 비정상 해석을 수행하였다. 주로 터, 꼬리로터, 그리고 유도무기를 포함하는 동체로 구성되는 헬리콥터 전기체 형상에 대한 비정상 해석을 수행하였으며, 6자유도 운동 기법을 이용하여 헬리콥터에서 발사되는 유도 무기의 초기 발사 거동을 예측하였다. 발사위치 및 유도무기의 추력크기에 따른 발사거동을 비교하였으며, 주로터에서 발생하는 비정상 내리흐름에 따른 유도무기의 비행 특성을 분석하였다.

MSBS-SPR Integrated System Allowing Wider Controllable Range for Effective Wind Tunnel Test

  • Sung, Yeol-Hun;Lee, Dong-Kyu;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.414-424
    • /
    • 2017
  • This paper introduces an experimental device which can measure accurate aerodynamic forces without support interference in wide experimental region for wind tunnel test of micro aerial vehicles (MAVs). A stereo pattern recognition (SPR) method was introduced to a magnetic suspension and balance system (MSBS), which can eliminate support interference by levitating the experimental model, to establish wider experimental region; thereby MSBS-SPR integrated system was developed. The SPR method is non-contact, highly accurate three-dimensional position measurement method providing wide measurement range. To evaluate the system performance, a series of performance evaluations including SPR system measurement accuracy and 6 degrees of freedom (DOFs) position/attitude control of the MAV model were conducted. This newly developed system could control the MAV model rapidly and accurately within almost 60mm for translational DOFs and 40deg for rotational DOFs inside of $300{\times}300mm$ test section. In addition, a static wind tunnel test was conducted to verify the aerodynamic force measurement capability. It turned out that this system could accurately measure the aerodynamic forces in low Reynolds number, even for the weak forces which were hard to measure using typical balance system, without making any mechanical contact with the MAV model.

Experimental study on wind-induced dynamic interference effects between two tall buildings

  • Huang, Peng;Gu, Ming
    • Wind and Structures
    • /
    • 제8권3호
    • /
    • pp.147-161
    • /
    • 2005
  • Two identical tall building models with square cross-sections are experimentally studied in a wind tunnel with high-frequency-force-balance (HFFB) technique to investigate the interference effects on wind loads and dynamic responses of the interfered building. Another wind tunnel test, in which the interfered model is an aeroelastic one, is also carried out to further study the interference effects. The results from the two kinds of tests are compared with each other. Then the influences of turbulence in oncoming wind on dynamic interference factors are analyzed. At last the artificial neural networks method is used to deal with the experimental data and the along-wind and across-wind dynamic interference factor $IF_{dx}$ & $IF_{dy}$ contour maps are obtained, which could be used as references for wind load codes of buildings.

Use of CFD For Design Validation of A Transonic Civil Transport

  • Ok, Honam;Kim, Insun;Choi, Seong-Wook;Sung, Bongzoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.13-20
    • /
    • 2000
  • The applications of CFD in the design process of a transonic civil transport at Korea Aerospace Research Institute (KARI) are outlined. Three Navier-Stokes solvers, developed at KARI with different grid approaches, are used to predict the aerodynamic coefficients and solve the flowfield of various configurations. Multi-block, Chimera, and unstructured grids are the approaches implemented. The accuracy of the codes is verified for the transonic flow about RAE wing/fuselage configuration. The multi-block code is used to provide the detailed data on the flowfield around a wall interference model with different test section sizes which will be used in establishing the wall interference correction method. The subsonic and transonic flowfields about K100-04A, one of the configurations of a 100-seater transport developed by KARI and Korea Commercial Aircraft Development Consortium (KCDC), are computed to predict the aerodynamic coefficients. The results for the subsonic flow are compared with those of wind tunnel test, and the agreement is found to be excellent. The interference effect of nacelle installation on the wing of K100-04A is also investigated using the unstructured grid method, and about 10% reduction in wing lift is observed. The accuracy of the three developed codes is verified, and they are used as an efficient tool in the design process of a transonic transport.

  • PDF

헬리콥터 로터의 폐쇄형 및 개방형 풍동시험 벽면효과 보정기법 연구 (Wind Tunnel Wall Interference Correction Method for Helicopter Rotor Tests with Closed and open Test Sections)

  • 이현정;장종윤;이승수;김범수;송근웅
    • 한국항공우주학회지
    • /
    • 제36권7호
    • /
    • pp.621-627
    • /
    • 2008
  • 풍동에서 측정된 공력자료에는 풍동벽면의 영향으로 인하여 불가항력적인 오차가 포함되어 있다. 벽면영향이 없는 공력자료를 얻기 위해서는 이러한 원하지 않는 벽면효과를 제거 하여야 한다. 유선곡률 효과는 풍동벽면의 영향으로 유선의 곡률이 자유 흐름의 것과 다르기 때문에 발생한다. 고정익 항공기에 사용되고 있는 전통적인 유선곡률 효과를 보정방법인 Glauert의 보정방법은 회전익 항공기에 적용이 적절하지 않다. 본 논문에서는 로터에 적절한 후류모델을 사용하는 Heyson의 보정방법을 사용하여 로터축 기울어짐 각과 동압을 보정하였다. Heyson 보정방법의 결과를 Glauert 보정방법의 결과와 비교하였다.

저속 풍동시험 시 NASA Common Research Model의 Belly Sting 모형 지지부에 의한 간섭효과에 관한 연구 (Belly Sting Model Support Interference Effect of NASA Common Research Model at Low Speed Wind Tunnel)

  • 차경환;김남균;고성호
    • 한국항공우주학회지
    • /
    • 제49권3호
    • /
    • pp.167-174
    • /
    • 2021
  • NASA Common Research Model의 29.7% 축소 모형에 대하여 저속 풍동시험 조건으로 수치해석을 수행하였다. 낮은 레이놀즈수 영역인 0.3×106에서 Belly sting 모형 지지부를 장착한 CRM의 공력계수를 측정하는 시험이 수행되었으며, 수치해석 결과와 비교하였다. 해석의 타당성을 검증하기 위해 선행연구 조건으로 전산해석을 수행하여 비교하였다. Belly sting 모형 지지부 유무에 대한 해석 결과 지지부에 의한 간섭 효과로 동체뿐만 아니라 주날개, 꼬리날개까지 공력에 영향이 있음을 확인하였다.

솔리디티에 따른 H-로터의 공기역학적 특성 및 성능해석 (Numerical Analysis of Aerodynamic Characteristics and Performance Analysis on H-rotor with Various Solidities)

  • 주성준;이주희
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.5-13
    • /
    • 2016
  • Three-dimensional unsteady numerical analysis has been performed to observe aerodynamic characteristics of a H-rotor. Generally, the structure of the H-rotor is simple but the aerodynamic characteristics are exceptionably complicated since the angle of attacks and incident velocities to a blade are considerably varied according to the azimuth angles and solidities. The blade in the upwind revolution between 0 to 180 degree obtains aerodynamic energy from the free stream but the blade in the downwind revolution between 180 to 360 degree does not. When the rotating speed increases, the blade in the downwind revolution accelerates the air around the blade like a fan and it consumes the energy and shows negative torque in the area. On the other hand, the direction of the free stream is bent because of the interaction between blade the free stream. Therefore, the operation point (highest power coefficient) appears at a lower tip-speed-ratio what it is expected.

부유식 다수 풍력 발전기에 작용하는 비대칭 공력 하중의 영향 (Influence of Asymmetric Aerodynamic Loading on Multiple Unit Floating Offshore Wind Turbine)

  • 배윤혁
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.255-262
    • /
    • 2015
  • The present study developed a numerical simulation tool for the coupled dynamic analysis of multiple turbines on a single floater (or Multiple Unit Floating Offshore Wind Turbine (MUFOWT)) in the time domain, considering the multiple-turbine aero-blade-tower dynamics and control, mooring dynamics, and platform motions. The numerical tool developed in this study was designed based on and extended from the single-turbine analysis tool FAST to make it suitable for multiple turbines. For the hydrodynamic loadings of floating platform and mooring-line dynamics, the CHARM3D program developed by the authors was incorporated. Thus, the coupled dynamic behavior of a floating base with multiple turbines and mooring lines can be simulated in the time domain. To investigate the effect of asymmetric aerodynamic loading on the global performance and mooring line tensions of the MUFOWT, one turbine failure case with a fully feathered blade pitch angle was simulated and checked. The aerodynamic interference between adjacent turbines, including the wake effect, was not considered in this study to more clearly demonstrate the influence of the asymmetric aerodynamic loading on the MUFOWT. The analysis shows that the unbalanced aerodynamic loading from one turbine in MUFOWT may induce appreciable changes in the performance of the floating platform and mooring system.