• 제목/요약/키워드: Aerodynamic function

검색결과 211건 처리시간 0.027초

훈련된 여자 성악가와 일반인의 호흡능력에 대한 비교 연구 (Differences in Respiratory Function and Vocal Aerodynamics between Professional Sopranos and Female Subjects without Vocal Training)

  • 최홍식;남도현;안철민;임성은;강성웅
    • 대한후두음성언어의학회지
    • /
    • 제12권2호
    • /
    • pp.121-125
    • /
    • 2001
  • Singing requires exquisite coordination between the respiratory and phonatory system to efficiently control glottal airflow. Respiratory function and vocal aerodynamics were investigated in six female professional sopranos and in six female subjects without vocal training. All sopranos had more than 15 years of formal classic vocal training. Pulmonary function test data on simple pulmonary function, flow volume curve, static lung volumes, maximum inspiratory pressure(MIP), and maximum expiratory pressure(MEP) were obtained from all subjects. Vocal aerodynamic studies of maximum phonation time(MPT), phonation quotient, and mean glottal flow rates (MFR) were also measured in all subjects. Simple pulmonary function in professional sopranos was generally the same as that of other female subjects without vocal training. However, MIP and MEP showing respiratory muscle forces were significantly elevated in professional sopranos, compared to those of other female subjects without vocal training. Maximum phonation times and phonation quotient in sopranos are longer than those of other female subjects even though there were no differences in simple pulmonary function. High-pitched tones were made with significantly higher mean glottal flow rates(GFR) in normal subjects than low-pitched tones, whereas no changes in GFR were found in sopranos. The result indicated that sopranos demonstrated significant improvements in aerodynamic measures of GFR, maximum phonation time, suggesting an increase in glottal efficiency.

  • PDF

에어포일 공력 성능 예측을 위한 딥러닝 기반 방법론 연구 (Deep learning-based Approach for Prediction of Airfoil Aerodynamic Performance)

  • 천성우;정호진;박민규;정인호;조해성;기영중
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.17-27
    • /
    • 2022
  • 본 논문에서는 에어포일의 좌표 데이터에 대해 공력 특성을 예측할 수 있는 합성곱 신경망 기반 네트워크 프레임 워크를 설계하였으며 Xfoil을 이용한 공력 데이터를 적용하여 네트워크의 가능성을 확인하였다. 이 때 에어포일의 두께 변화에 따른 공력 특성 예측을 수행하였다. 부호화 거리 함수를 이용하여 에어포일의 좌표 데이터를 이미지 데이터로 변환하였으며 받음각 정보를 반영하였다. 또한 에어포일의 압력 계수 분포를 축소 모델 기법 중 하나인 적합 직교 분해를 이용하여 축소된 데이터로 표현하였으며 이를 네트워크의 출력 데이터로 사용하였다. 제시하는 네트워크의 내삽과 외삽 성능을 평가하기 위하여 시험 데이터를 구성하였고, 결과적으로 내삽 데이터에 대한 예측 성능이 외삽에 비해 우수함을 확인하였다.

System Identification of Aerodynamic Coefficients of F-16XL (ICCAS 2004)

  • Seo, In-Yong;Pearson, Allan E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.383-388
    • /
    • 2004
  • This paper presents the aerodynamic coefficient modeling with a new model structure explored by Least Squares using Modulating Function Technique (LS/MFT) for an F-16XL airplane using wind tunnel data supplied by NASA/LRC. A new model structure for aerodynamic coefficient was proposed, one that considered all possible combination terms of angle of attack ${\alpha}$(t) and ${\alpha}$(t) given number of harmonics K, and was compared with Pearson's model, which has the same number of parameters as the new model. Our new model harmonic results show better agreement with the physical data than Pearson's model. The number of harmonics in the model was extended to 6 and its parameters were estimated by LS/MFT. The model output of lift coefficient with K=6 correspond reasonably well with the physical data. In particular, the estimation performances of four aerodynamic coefficients were greatly improved at high frequency by considering all harmonics included in the input${\alpha}$(t), and by using the new model. In addition, the importance of each parameter in the model was analyzed by parameter reduction errors. Moreover, the estimation of three parameters, i.e., amplitude, phase and frequency, for a pure sinusoid and a finite sum of sinusoids- using LS/MFT is investigated.

  • PDF

공력면 전개 모사를 위한 공력 모델링 연구 (A Study of Aerodynamic Modelling for Fin Unfolding Motion Analysis)

  • 정석영;윤성준
    • 한국항공우주학회지
    • /
    • 제36권5호
    • /
    • pp.420-427
    • /
    • 2008
  • 접힌 공력면이 전개하는 운동을 모사하기 위하여 전개 운동 방정식을 수립하고 공력면에 작용하는 모멘트 등을 모델링하였다. 공력에 의한 롤 모멘트는 정적 롤 모멘트와 감쇠 모멘트로 이루어져 있으며 정적 롤 모멘트는 전개 하중 측정을 위한 풍동 시험을 통하여 획득한 정적 롤 모멘트 계수로부터 계산된다. 롤 감쇠 계수는 패널법을 이용한 수치 해석을 통하여 산출되었는데 전개 각속도로부터 유발된 받음각에 상응하는 변위각을 공력면에 적용하여 수치해석을 하였다. 공력면 형상에 적용한 변위각은 회전 중심으로부터 공력면 끝단까지 선형적으로 증가하며 회전 중심에서는 변위가 없다. 롤 감쇠 계수는 전개 각속도에 따른 롤 모멘트 계수의 변화율로 계산되며 공력조건과 전개각의 함수이고 전개 각속도에 대해서는 일정하다고 가정하였다. 롤 감쇠를 포함하여 모사된 공력면의 전개 모사는 시험과 비교하여 유사한 결과를 보여주었다.

Measurement of aerodynamic coefficients of tower components of Tsing Ma Bridge under yaw winds

  • Zhu, L.D.;Xu, Y.L.;Zhang, F.;Xiang, H.F.
    • Wind and Structures
    • /
    • 제6권1호
    • /
    • pp.53-70
    • /
    • 2003
  • Tsing Ma Bridge in Hong Kong is the longest suspension bridge in the world carrying both highway and railway. It has two H-shape concrete towers, each of which is composed of two reinforced concrete legs and four deep transverse prestressed concrete beams. A series of wind tunnel tests have been performed to measure the aerodynamic coefficients of the tower legs and transverse beams in various arrangements. A 1:100 scaled 3D rigid model of the full bridge tower assembled from various tower components has been constructed for different test cases. The aerodynamic coefficients of the lower and upper segments of the windward and leeward tower legs and those of the transverse beams at different levels, with and without the dummy bridge deck model, were measured as a function of yaw wind angle. The effects of wind interference among the tower components and the influence of the bridge deck on the tower aerodynamic coefficients were also investigated. The results achieved can be used as the pertinent data for the comparison of the computed and field-measured fully coupled buffeting responses of the entire bridge under yaw winds.

비대칭 수직 접이식 로터세일의 성능 평가에 관한 수치해석 연구 (Numerical Study on the Aerodynamic Performance of Asymmetric Vertical Folding Rotor Sail)

  • 박정윤;서장훈;박동우
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.68-76
    • /
    • 2024
  • The rotor sail is one of the representative devices in eco-friendly wind-assisted propulsion systems that have been practically applied to commercial ships. The present study proposes an asymmetric vertical folding rotor sail (AFRS) designed for small ships, featuring asymmetric geometry along the vertical direction and the function of vertical folding. To evaluate the aerodynamic performance of rotor sail, the drag, lift and lift-to-drag ratio were derived using computational fluid dynamics. The aerodynamic performance of AFRS was compared with that of normal rotor sail with different aspect ratios and spin ratios. The effect of geometric parameters on the aerodynamic performance of AFRS was assessed by varying the asymmetric diameter ratio. The maximum improvement in lift-to-drag ratio for AFRS was approximately 12% in the considered case. Additionally, the resistance is decreased when AFRS is vertically folded without rotating. Throughout the present study, improved aerodynamic and resistance performances for AFRS were confirmed, which will successfully provide additional propulsion to small ships.

A novel aerodynamic vibration and fuzzy numerical analysis

  • Timothy Chen;Yahui Meng;Ruei-Yuan Wang;ZY Chen
    • Wind and Structures
    • /
    • 제38권3호
    • /
    • pp.161-170
    • /
    • 2024
  • In recent years, there have been an increasing number of experimental studies showing the need to include robustness criteria in the design process to develop complex active control designs for practical implementation. The paper investigates the crosswind aerodynamic parameters after the blocking phase of a two-dimensional square cross-section structure by measuring the response in wind tunnel tests under light wind flow conditions. To improve the accuracy of the results, the interpolation of the experimental curves in the time domain and the analytical responses were numerically optimized to finalize the results. Due to this combined effect, the three aerodynamic parameters decrease with increasing wind speed and asymptotically affect the upper branch constants. This means that the aerodynamic parameters along the density distribution are minimal. Taylor series are utilized to describe the fuzzy nonlinear plant and derive the stability analysis using polynomial function for analyzing the aerodynamic parameters and numerical simulations. Due to it will yield intricate terms to ensure stability criterion, therefore we aim to avoid kinds issues by proposing a polynomial homogeneous framework and utilizing Euler's functions for homogeneous systems. Finally, we solve the problem of stabilization under the consideration by SOS (sum of squares) and assign its fuzzy controller based on the feasibility of demonstration of a nonlinear system as an example.

단기간 기관지 삽관후의 음성의 변화 (Effect of Short-Term Endotracheal Intubation on Vocal Function)

  • 장혁기;강무완;최정환;유영삼;우훈영;윤자복
    • 대한후두음성언어의학회지
    • /
    • 제11권1호
    • /
    • pp.64-68
    • /
    • 2000
  • Background and Objectives : To assess the role of altered vocal function in transient voice change after short-term endotracheal intubation, we evaluated acoustic parameters, aerodynamic parameters, and laryngoscopic characteristics preoperatively and postoperatively. Materials and Methods : Vocal function of 10 patients undergoing tympanoplasty and mastoidectomy using general anesthesia and endotracheal intubation were studied preoperatively, at 1day and 7 days after extubation. Acoustic analysis, aerodynamic study, and telescopic examination were used to assess vocal function. Results : In acoustic parameters, there was no significant difference between preoperative and postoperative measures. However, in subglottic pressure, ere was a significant decrease at 1 day after extubation and this change was return to preoperative value at 7 days after extubation. MPT(Maximal Phonation Time), MER(Mean flow Ratio), and VC(Vital Capacity) were decreased 1 day after extubation but did not show statistically significant change. Three of 10 patients manifested a vocal fold edema and injection 1 day after extubation. Conclusions : Subglottic pressure revealed a significant decrease at 1 day after extubation. And this change was correlated with laryngeal morphologic change and decrement in pulmonary function.

  • PDF

Low Speed Thrust Characteristics of a Modified Sonic Arc Airfoil Rotor through Spin Test Measurement

  • Lee, Jang-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.317-322
    • /
    • 2012
  • The low speed aerodynamic characteristics for a modified sonic arc airfoil which is designed by using the nose shape function of sonic arc, the shape function of NACA four-digit wing sections, and Maple are experimentally investigated. The small rotor blades of a modified sonic arc and NACA0012 airfoil are precisely fabricated with a commercially available light aluminum(Al 6061-T6) and are spin tested over a low speed range (3000rpm-5000rpm). In a consuming power comparison, the consuming powers of NACA0012 are higher than that of modified sonic arcs at each pitch angle. The measured rotor thrust for each pitch angle is used to estimate the rotor thrust coefficient according to momentum theory in the hover state. The value of thrust coefficients for both two airfoils at each pitch angle show almost constant values over the low Mach number range. However, the rotor thrust coefficient of NACA0012 is higher than that of the modified sonic arc at each pitch angle. In conclusion, the aerodynamic performance of NACA0012 is better than that of modified sonic arcs in the low speed regime. This test model will provide a convenient platform for improving the aerodynamic performance of small scale airfoils and for performing design optimization studies.

STT(Skid-to-Turn)미사일의 매개변수화 어파인 모델링 및 제어 (New Parametric Affine Modeling and Control for Skid-to-Turn Missiles)

  • 좌동경;최진영;김진호;송찬호
    • 제어로봇시스템학회논문지
    • /
    • 제6권8호
    • /
    • pp.727-731
    • /
    • 2000
  • This paper presents a new practical autopilot design approach to acceleration control for tail-controlled STT(Skid-to-Turn) missiles. The approach is novel in that the proposed parametric affine missile model adopts acceleration as th controlled output and considers the couplings between the forces as well as the moments and control fin deflections. The aerodynamic coefficients in the proposed model are expressed in a closed form with fittable parameters over the whole operating range. The parameters are fitted from aerodynamic coefficient look-up tables by the function approximation technique which is based on the combination of local parametric models through curve fitting using the corresponding influence functions. In this paper in order to employ the results of parametric affine modeling in the autopilot controller design we derived a parametric affine missile model and designed a feedback linearizing controller for the obtained model. Stability analysis for the overall closed loop sys-tem is provided considering the uncertainties arising from approximation errors. the validity of the proposed modeling and control approach is demonstrated through simulations for an STT missile.

  • PDF