• Title/Summary/Keyword: Aerodynamic derivatives identification

Search Result 12, Processing Time 0.017 seconds

Aerodynamic Derivatives Identification Using a Non-Conservative Robust Kalman Filter

  • Lee, Han-Sung;Ra, Won-Sang;Lee, Jang-Gyu;Song, Yong-Kyu;Whang, Ick-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.132-140
    • /
    • 2012
  • A non-conservative robust Kalman filter (NCRKF) is applied to flight data to identify the aerodynamic derivatives of an unmanned autonomous vehicle (UAV). The NCRKF is formulated using UAV lateral motion data and then compared with results from the conventional Kalman filter (KF) and the recursive least square (RLS) method. A superior performance for the NCRKF is demonstrated by simulation and real flight data. The NCRKF is especially effective in large uncertainties in vehicle modeling and in measuring flight data. Thus, it is expected to be useful in missile and aircraft parameter identification.

Identification of flutter derivatives of bridge decks using CFD-based discrete-time aerodynamic models

  • Zhu, Zhiwen;Gu, Ming
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.215-233
    • /
    • 2014
  • This paper presents a method to extract flutter derivatives of bridge decks based on a combination of the computational fluid dynamics (CFD), system simulations and system identifications. The incompressible solver adopts an Arbitrary Lagrangian-Eulerian (ALE) formulation with the finite volume discretization in space. The imposed sectional motion in heaving or pitching relies on exponential time series as input, with aerodynamic forces time histories acting on the section evaluated as output. System identifications are carried out to fit coefficients of the inputs and outputs of ARMA models, as to establish discrete-time aerodynamic models. System simulations of the established models are then performed as to obtain the lift and moment exerting on the sections to a sinusoidal displacement. It follows that flutter derivatives are identified. The present approaches are applied to a hexagon thin plate and a real bridge deck. The results are compared to the Theodorsen closed-form solution and those from wind tunnel tests. Satisfactory agreements are observed.

Determination of flutter derivatives by stochastic subspace identification technique

  • Qin, Xian-Rong;Gu, Ming
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2004
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. In this paper, one popular stochastic system identification technique, covariance-driven Stochastic Subspace Identification(SSI in short), is firstly presented for estimation of the flutter derivatives of bridge decks from their random responses in turbulent flow. Secondly, wind tunnel tests of a streamlined thin plate model and a ${\Pi}$ type blunt bridge section model are conducted in turbulent flow and the flutter derivatives are determined by SSI. The flutter derivatives of the thin plate model identified by SSI are very comparable to those identified by the unifying least-square method and Theodorson's theoretical values. As to the ${\Pi}$ type section model, the effect of turbulence on aerodynamic damping seems to be somewhat notable, therefore perhaps the wind tunnel tests for flutter derivative estimation of those models with similar blunt sections should be conducted in turbulent flow.

비행시험을 통한 가로/방향 정적 미계수 추정에 관한 연구

  • Kim, Eung-Tai;Seong, Kie-Jeong;Kim, Yeong-Cheol;Kang, Sang-Jin
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.22-28
    • /
    • 2003
  • This paper presents a method for estimating static aerodynamic derivatives by analyzing data obtained from the flying quality evaluation test of a small canard aircraft. The aerodynamic derivatives extracted from maximum likelihood estimation method and from the proposed method in this paper are compared in the same polt. Reliable static aerodynamic derivatives were extracted from a limited number of the flight tests by the proposed method. The parameter data obtained from this method can be used as reference for the conventional parameter identification methods such as maximum likelihood estimation method.

  • PDF

Vortex induced vibration and flutter instability of two parallel cable-stayed bridges

  • Junruang, Jirawat;Boonyapinyo, Virote
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.633-648
    • /
    • 2020
  • The objective of this work was to investigate the interference effects of two-parallel bridge decks on aerodynamic coefficients, vortex-induced vibration, flutter instability and flutter derivatives. The two bridges have significant difference in cross-sections, dynamic properties, and flutter speeds of each isolate bridge. The aerodynamic static tests and aeroelastic tests were performed in TU-AIT boundary layer wind tunnel in Thammasat University (Thailand) with sectional models in a 1:90 scale. Three configuration cases, including the new bridge stand-alone (case 1), the upstream new bridge and downstream existing bridge (case 2), and the downstream new bridge and the upstream existing bridge (case 3), were selected in this study. The covariance-driven stochastic subspace identification technique (SSI-COV) was applied to identify aerodynamic parameters (i.e., natural frequency, structural damping and state space matrix) of the decks. The results showed that, interference effects of two bridges decks on aerodynamic coefficients result in the slightly reduction of the drag coefficient of case 2 and 3 when compared with case 1. The two parallel configurations of the bridge result in vortex-induced vibrations (VIV) and significantly lower the flutter speed compared with the new bridge alone. The huge torsional motion from upstream new bridge (case 2) generated turbulent wakes flow and resulted in vertical aerodynamic damping H1* of existing bridge becomes zero at wind speed of 72.01 m/s. In this case, the downstream existing bridge was subjected to galloping oscillation induced by the turbulent wake of upstream new bridge. The new bridge also results in significant reduction of the flutter speed of existing bridge from the 128.29 m/s flutter speed of the isolated existing bridge to the 75.35 m/s flutter speed of downstream existing bridge.

Effects of frequency ratio on bridge aerodynamics determined by free-decay sectional model tests

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • A series of wind tunnel free-decay sectional model dynamic tests were conducted to examine the effects of torsional-to-vertical natural frequency ratio of 2DOF bridge dynamic systems on the aerodynamic and dynamic properties of bridge decks. The natural frequency ratios tested were around 2.2:1 and 1.2:1 respectively, with the fundamental vertical natural frequency of the system held constant for all the tests. Three 2.9 m long twin-deck bridge sectional models, with a zero, 16% (intermediate gap) and 35% (large gap) gap-to-width ratio, respectively, were tested to determine whether the effects of frequency ratio are dependent on bridge deck cross-section shapes. The results of wind tunnel tests suggest that for the model with a zero gap-width, a model to approximate a thin flat plate, the flutter derivatives, and consequently the aerodynamic forces, are relatively independent of the torsional-to-vertical frequency ratio for a relatively large range of reduced wind velocities, while for the models with an intermediate gap-width (around 16%) and a large gap-width (around 35%), some of the flutter derivatives, and therefore the aerodynamic forces, are evidently dependent on the frequency ratio for most of the tested reduced velocities. A comparison of the modal damping ratios also suggests that the torsional damping ratio is much more sensitive to the frequency ratio, especially for the two models with nonzero gap (16% and 35% gap-width). The test results clearly show that the effects of the frequency ratio on the flutter derivatives and the aerodynamic forces were dependent on the aerodynamic cross-section shape of the bridge deck.

Identification of flutter derivatives from full-scale ambient vibration measurements of the Clifton Suspension Bridge

  • Nikitas, Nikolaos;Macdonald, John H.G.;Jakobsen, Jasna B.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.221-238
    • /
    • 2011
  • The estimated response of large-scale engineering structures to severe wind loads is prone to modelling uncertainties that can only ultimately be assessed by full-scale testing. To this end ambient vibration data from full-scale monitoring of the historic Clifton Suspension Bridge has been analysed using a combination of a frequency domain system identification method and a more elaborate stochastic identification technique. There is evidence of incipient coupling action between the first vertical and torsional modes in strong winds, providing unique full-scale data and making this an interesting case study. Flutter derivative estimation, which has rarely previously been attempted on full-scale data, was performed to provide deeper insight into the bridge aerodynamic behaviour, identifying trends towards flutter at higher wind speeds. It is shown that, as for other early suspension bridges with bluff cross-sections, single-degree-of-freedom flutter could potentially occur at wind speeds somewhat below requirements for modern designs. The analysis also demonstrates the viability of system identification techniques for extracting valuable results from full-scale data.

Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV (실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출)

  • Lee, Hwan;Kim, Eung-Tae;Choi, Hyoung-Sik;Choi, Ji-Young;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.999-1005
    • /
    • 2007
  • In case of an abnormal condition of control surface, the real-time estimation of aerodynamic derivatives are required for the reconfigurable control system to be flight for missions or return to the head office. The goal of this paper is to represent a technique of fault detection to the control surface as a base research to the fault tolerant control system for safety improvement of UAV. The real-time system identification for the fault detection to the control surface was applied with the recursive Fourier Transform and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than about 50% in the normal condition.

A Study on a Small Canard Aircraft Flight Characteristics through Flight Test (비행시험을 통한 소형 커나드항공기의 비행 특성 연구)

  • Kim, Eung-Tai;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.31-38
    • /
    • 2002
  • This paper presents the analysis of the flight test data measured by the sensors installed on a four-seat canard aircraft. The inherent stall proof characteristics of canard aircraft was verified from the stall test. The dihedral effect, adverse yaw and roll control power were examined and the neutral point that determines the longitudinal stability of the aircraft was investigated. The dynamic characteristics such as dutch roll mode were also examined. Without relying on the parameter identification method, the aerodynamic derivatives or the relations between the aerodynamic derivatives were obtained by analyzing the steady state flight data.

Parameter Identification and Simulation of Light Aircraft Based on Flight Test (비행시험을 통한 경항공기의 매개변수 확정과 시뮬레이션)

  • 황명신;이정훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.237-247
    • /
    • 1999
  • Flight parameters of a light aircraft in normal category named ChangGong-91 we identified from flight tests. Modified Maximum Likelihood Estimation (MMLE) is used to produce aerodynamic coefficients, stability and control derivatives. A Flight Training Device (FTD) has been developed based on the identified flight parameters. Flat earth, rigid body, and standard atmosphere are assumed in the FTD model. Euler angles are adapted for rotational state variables to reduce computational load. Variations in flight Mach number and Reynolds number are assumed to be negligible. Body, stability and inertial axes allow 6 second-order linear differential equations for translational and rotational motions. The equations of motion are integrated with respect to time, resulting in good agreements with flight tests.

  • PDF