• Title/Summary/Keyword: Aerodynamic control

Search Result 490, Processing Time 0.024 seconds

Design, Implementation, and Flight Tests of a Feedback Linearization Controller for Multirotor UAVs

  • Lee, Dasol;Lee, Hanseob;Lee, Jaehyun;Shim, David Hyunchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.740-756
    • /
    • 2017
  • This paper proposes a feedback-linearization-based control algorithm for multirotor unmanned aerial vehicles (UAVs). The feedback linearization scheme is highly efficient for considering nonlinearity between the rotational and translational motion of multirotor UAVs. We also propose a dynamic equation that reflects the aerodynamic effects of the vehicles; the equation's parameters can be determined through curve fitting using actual flight data. We derive the feedback linearization controller from the proposed dynamic equation, and propose a Luenberger observer to attenuate measurement noises. The proposed algorithm is implemented using our in-house flight control computer, and we describe its implementation in detail. To investigate the performance of the proposed algorithm, we carry out two flight scenarios: the first scenario, an autonomous landing on a moving platform, is a test of maneuverability; the second, picking up and replacing an object, test the algorithm's accuracy. In these scenarios, the proposed algorithm precisely controls multirotor UAVs, and we confirm that it can be successfully applied to real flight environments.

Software Development for the Performance Evaluation and Blade Design of a Pitch-Controlled HAWT based on BEMT (날개요소 운동량 이론을 이용한 피치제어형 수평축 풍력터빈 블레이드 설계 및 성능평가 소프트웨어 개발)

  • Mo, Jang-Oh;Kim, Bum-Suk;Kim, Mann-Eung;Choi, Young-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • The purpose of this study is to develop a software for the performance evaluation and blade design of a pitch-controlled HAWT using BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. The HERACLES V2.0 software consist of three major part ; basic blade design, aerodynamic coefficient mapping and performance calculation including stall or pitch control option. A 1MW wind turbine blade was designed at the rated wind speed(12m/s) composing five different airfoils such as FFA-W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power predicted by BEMT at the rated wind speed is about 1.27MW. Also, CFD analysis was performed to confirm the validity of the BEMT results. The comparison results show good agreement about the error of 6.5% in rated mechanical power.

Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method (자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정)

  • Bang, Keuk-Hee;Kim, Nak-Wan;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

Prevention of suspension bridge flutter using multiple tuned mass dampers

  • Ubertini, Filippo
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.235-256
    • /
    • 2010
  • The aeroelastic stability of bridge decks equipped with multiple tuned mass dampers is studied. The problem is attacked in the time domain, by representing self-excited loads with the aid of aerodynamic indicial functions approximated by truncated series of exponential filters. This approach allows to reduce the aeroelastic stability analysis in the form of a direct eigenvalue problem, by introducing an additional state variable for each exponential term adopted in the approximation of indicial functions. A general probabilistic framework for the optimal robust design of multiple tuned mass dampers is proposed, in which all possible sources of uncertainties can be accounted for. For the purposes of this study, the method is also simplified in a form which requires a lower computational effort and it is then applied to a general case study in order to analyze the control effectiveness of regular and irregular multiple tuned mass dampers. A special care is devoted to mistuning effects caused by random variations of the target frequency. Regular multiple tuned mass dampers are seen to improve both control effectiveness and robustness with respect to single tuned mass dampers. However, those devices exhibit an asymmetric behavior with respect to frequency mistuning, which may weaken their feasibility for technical applications. In order to overcome this drawback, an irregular multiple tuned mass damper is conceived which is based on unequal mass distribution. The optimal design of this device is finally pursued via a full domain search, which evidences a remarkable robustness against frequency mistuning, in the sense of the simplified design approach.

Modelling of Fixed Wing UAV and Flight Control Computer Based Autopilot System Development for Integrated Simulation HILS Environment (고정익 UAV 모델링 및 비행조종컴퓨터 기반 오토파일럿 통합 시뮬레이션 HILS 환경 구축)

  • Kim, Lamsu;Lee, Dongwoo;Lee, Hohyeong;Hong, Suwoon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.857-866
    • /
    • 2022
  • Fixed-wing UAVs have long endurance and range capabilities compared to other aerial platforms. These advantages led fixed-wing UAVs to become a popular platform for reconnaissance missions in the military. In this research, we modeled fixed-wing UAVs, including the landing gear model and developed a guidance and control system for flight control computers to construct a HILS environment. We also developed an autopilot system that includes automated take-off, cruise, and landing control for UAVs. We also retrived the Aerodynamic coefficients an UAV using Datcom and AVL software and used them for 6 degrees of freedom modeling. The Flight control computer calculates guidance commands using the Carrot chasing guidance law after distinguishing the condition of the UAV based on 16 pre-defined flight modes and calculates control inputs using Nonlinear Dynamic Inversion (NDI) control scheme. We used RTNngine to integrate the Simulink model and flight control computer for HILS environment formulation.

Noise Analysis and Reduction Methods of the All-in One Window Ventilation System (창호일체형 환기장치의 소음분석 및 저감방안)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.43-55
    • /
    • 2013
  • The window ventilation system based on the heat recovery device was developed which make air ventilation possible without opening the windows. However, mechanical and aerodynamic noises were come to pass which annoyed people in rooms. In the present study, noise of new window ventilation system was measured in both general room and anechoic chamber. Also, the noise path was detected to find cause of noise generation and vulnerable area of the device. Sound absorptive and insulation materials were applied to mitigate the noise. Finally, an alternative noise control method was suggested which can satisfy with the indoor noise standards. As a result, it was shown that the cause of noise was the low transmission loss in the ventilation system. As a result, it was shown that the main noise source of the ventilation system was the blower and the major cause of noise was the low transmission loss of the ventilation system. It is also concluded that the noise levels complies with the noise standards of 40 dBA when 2 mm rubber sheet is applied inside the ventilation system.

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

Aerodynamic Aspects of Dispersal Take-off Behavior Among the Phytoseiid Mites, Phytoseiulus persimilis, Neoseiulus fallacis and N. californicus (포식성 이리응애류, Phytoseiulus persimilis, Neoseiuzus fallacis와 N. californicus의 공중이동 이륙행동에 관한 공기역학적 연구)

  • Jung, Chul-Eui
    • Korean journal of applied entomology
    • /
    • v.40 no.2
    • /
    • pp.125-129
    • /
    • 2001
  • Some wingless species have evolved take-off behaviors that enable them to become airborne. We examined aerodynamic attributes of dispersal relative to the body size and standing vs. walking postures for three phytoseiids that were suspected to have different take-off behaviors and dispersal abilities, Phytoseiulus persimilis Athias-Henriot, Neoseiulus fallacis (Carman) and N. californicus (McGregor). The average vertical profile of Pp in the walking position was significantly higher than those of Nf and Nc when in walking position. The body height of Nf in the standing posture was significantly greater than the body height of Pp when in the walking position. Cross-section areas also showed similar patterns of difference. Nf in the standing posture would have more than twice the drag force than in walking posture because of more fluid momentum in the wind boundary layer However, Pp in the walking position would have similar drag to Nf in the standing posture because of a higher vertical profile and larger size. Thus we add the scientific evidence of presence and absence of take-off behavior of some phytoseiid mites and evolutionary aspects of aerial dispersal are further discussed.

  • PDF

Spectral & Aerodynamic Analysis of Cries in Infants with Cleft Lip and Palate. (구순구개열 환아의 crying에 대한 음향학적 및 공기역학적 분석)

  • Kim Eun-Ju;Ko Seung-O;Shin Hyo-Keun;Kim Hyun-Ki
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.5 no.2
    • /
    • pp.95-108
    • /
    • 2002
  • 언어 발달의 조기 단계를 이해하기 위한 일환으로 crying은 언어전 발달의 기초 단계로서 여러 학문적 분야에서 많은 연구가 있어왔다. 그러나 구순구개열(CLP))환아의 경우는cry-producing/control mechnism에 variation이 많은 이유로 이 분야의 연구는 거의 없는 실정이다. 이에 본 연구에서는 다음과 같은 의문점을 가지고 CLP환아의 cry feature에 대한분석을 하였다. 첫째, 정상아와 CLP환아의 cry에 전형적인 차이가 있는가? 둘째, CLP환아의 술전, 술후 cry feature에 변화가 있는가? 셋째, cry분석이 CLP환아의 이후 speech disorder에 대한 언어전 평가로서의 가치가 있는가? 넷째, 특정 parameter가 언어전 평가에 적절한 도구로 작용할 수 있는가? 생후 15개월 이내의 CLP 환아 3명과 유사한 나이대의 정상아 8명의 cry에 대한 공기역학 및 음향음성학적 분석을 통해 CLP 환아와 정상아, CLP환아의 술전, 술후 cry특성을 비교 분석하였다. 결과는 다음과 같다. 1 공기역학적 분석 1) airflow는 CLP 환아의 경우 정상아보다 약간 높았고 술 후 약간 증가하였다. 2)폐활량을 나타내는volume에서는 정상아보다 술전 CLP환자의 경우 보상적으로 더 큰 수치를 보였고 술후 약간 증가하였다. 3)강도를 나타내는 parameter(SPL)에서는 정상아 보다 술전 CLP환자의 계측치가 약간 작았으나 술 후 증가하는 양상을 보였다. 2. 음향음성학적 분석 1)기저 주파수 분석시 정상아에 비해 술 전 CLP환자의 경우 계측치가 약간 낮았으나 술 후 증가하여 정상군의 계측치에 근접하였다. 2)강도를 나타내는energy 측정시 정상아에 비해 술 전 CLP계측치가 보상성으로 약간 큰수치를 나타내었고 술 후 약간 더 증가하였다. 3) Shimmer에서는CUI환자의 술후계측치가술전에 비해 현저히 감소하여 정상군의 수치에 근접하였다.

  • PDF