• Title/Summary/Keyword: Aerodynamic coefficients

Search Result 369, Processing Time 0.028 seconds

Analysis of the Interaction Between Side Jet and Supersonic Free Stream Using K-factor (상호 작용 계수를 이용한 측추력 제트와 초음속 자유류 상호 작용에 관한 연구)

  • Kim, Min-Gyu;Lee, Kwang-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.101-110
    • /
    • 2012
  • The side jet effects between jet flow and free-stream on a missile body were investigated by experimentally and numerically for modeling aerodynamic coefficients in pitch plane. K-factors for normal force and pitching moment were introduced to estimate the side jet effects. The main parameters of the jet interaction phenomena were angle of attack, jet pressure ratio, Mach number and jet bank angle. The K-factors for normal force coefficient and pitching moment coefficients in pitch plane were analysed.

On wind stability requirements for emergency car warning triangles

  • Scarabino, A.;Delnero, J.S.;Camocardi, M.
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.345-354
    • /
    • 2012
  • This work discusses the wind stability requirements specified by UN Reg. 27 on emergency car warning triangles, which are of mandatory use in many countries. Wind tunnel experiments have been carried out in order to determine aerodynamic coefficients of commercial warning triangles and the friction coefficients between the triangle legs and an asphalt base that fulfils the roughness requirements stated by Reg. 27 for wind stability certification. The wind stability specifications for warning triangles are reviewed, compared with pressure field measurements and discussed. Results of wind tunnel tests and comparison with field measurements reported in the literature show that the requirements could be excessively conservative.

Performance Study of Thrust Control Unit with the Various Geometric Shapes

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.354-361
    • /
    • 2016
  • This study aims to identify aerodynamic characteristics of the ramp tab, a mechanical deflector, by conducting a non-combustive experiment using compressed air and supersonic flow test equipment. With the ramp tabs installed symmetrically and asymmetrically on the outlet of the supersonic nozzle, the structure of the flow field, the thrust spoilage, the thrust deviation angle, and the lift/drag coefficients were derived and analyzed. The results show that the asymmetrically-installed ramp tabs are advantageous relative to the symmetrically-installed tabs in terms of the performance of thrust vector control, thrust deviation angle, and lift coefficient.

Analysis for Aerodynamic Resistance of Chrysanthemum Canopy through Wind Tunnel Test (풍동실험을 통한 국화군락의 공기유동 저항 분석)

  • Yu, In-Ho;Yun, Nam-Kyu;Cho, Myeong-Whan;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • A wind tunnel test was conducted at Protected Horticulture Experiment Station of National Horticultural Research Institute in Busan to find the aerodynamic resistance and quadratic resistance coefficient of chrysanthemum in greenhouse. The internal plants of the CFD model has been designed as a porous media because of the complexity of its physical shapes. Then the aerodynamic resistance value should be input for analyzing CFD model that crop is considered while the value varies by crops. In this study, the aerodynamic resistance value of chrysanthemum canopy was preliminarily found through wind tunnel test. The static pressure at windward increased as wind velocity and planting density increased. The static pressure at leeward decreased as wind velocity increased but was not significantly affected by planting density. The difference of static pressure between windward and leeward increased as wind velocity and planting density increased. The aerodynamic resistance value of chrysanthemum canopy was found to be 0.22 which will be used later as the input data of Fluent CFD model. When the planting distances were $9{\times}9\;cm$, $11{\times}11\;cm$, and $13{\times}13\;cm$, the quadratic resistance coefficients of porous media were found to be 2.22, 1.81, and 1.07, respectively. These values will be used later as the input data of CFX CFD model.

Prediction of negative peak wind pressures on roofs of low-rise building

  • Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.623-647
    • /
    • 2014
  • In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

A Study on Horizontal Moment Flight Coefficient Estimation of a Flying Disc Using Miniaturized Inertial Measurement Module (초소형 관성측정모듈을 이용한 플라잉디스크의 수평축 모멘트 미계수 추정 연구)

  • Son, Hyunjin;Lee, Ju Hwan;Lee, Young Jae;Sung, Sangkyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.385-392
    • /
    • 2018
  • This paper suggests a new method to estimate the roll and pitch damping moment coefficients of a flying disc through sensor data from the onboard IMU module. This method can be easily performed than wind tunnel or computational fluid dynamics methods because it estimates aerodynamic coefficients simply after accumulating the inertial data through several repeated flight experiments. Estimated coefficients are applied to a simulator which is based on the flight dynamics of a flying disc. Finally, the predicted flight trajectory is compared with the true position provided by GPS, which demonstrated the validity of the proposed estimation method.

Computational method in database-assisted design for wind engineering with varying performance objectives

  • Merhi, Ali;Letchford, Chris W.
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.439-452
    • /
    • 2021
  • The concept of Performance objective assessment is extended to wind engineering. This approach applies using the Database-Assisted Design technique, relying on the aerodynamic database provided by the National Institute of Standards and Technology (NIST). A structural model of a low-rise building is analyzed to obtain influence coefficients for internal forces and displacements. Combining these coefficients with time histories of pressure coefficients on the envelope produces time histories of load effects on the structure, for example knee and ridge bending moments, and eave lateral drift. The peak values of such effects are represented by an extreme-value Type I Distribution, which allows the estimation of the gust wind speed leading to the mean hourly extreme loading that cause specific performance objective compromises. Firstly a fully correlated wind field over large tributary areas is assumed and then relaxed to utilize the denser pressure tap data available but with considerably more computational effort. The performance objectives are determined in accordance with the limit state load combinations given in the ASCE 7-16 provisions, particularly the Load and Resistance Factor Design (LRFD) method. The procedure is then repeated for several wind directions and different dominant opening scenarios to determine the cases that produce performance objective criteria. Comparisons with two approaches in ASCE 7 are made.

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das;Rajdip Paul;Sujit Kumar Dalui
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.105-120
    • /
    • 2023
  • The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.

Design and Analysis for the Propeller of MAVs in Low Reynolds Number Flows (저레이놀즈수 영역의 초소형비행체 프로펠러 설계 및 해석)

  • Lee, Ki-Hak;Kim, Kyu-Hong;Lee, Kyung-Tae;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • The performance of MAV(Micro Air Vehicles) propellers is highly affected by the aerodynamic characteristics of a 2-D blade airfoil shapes. XFOIL is used to predict the lift and drag coefficients in low Reynolds Number flows. ARA-D 6%, which shows a good performance in low Reynolds Number regions, is selected as a blade airfoil. The 3-D propeller blade shape is optimized with the minimum energy loss condition, and the distribution of aerodynamic coefficients of ARA-D 6% is calculated. The designed optimal blade is compared with the Black Widow's propeller blade shape in the same conditions. The results indicate that the designed propeller installed in MAV can provide a good performance.

Pitching Moment Coefficient Modeling of KF-16 using Adaptive Design of Experiments with cost consideration (실험비용을 고려한 적응적 실험설계법 기반 KF-16 피칭모멘트계수 모델링)

  • Lee, Don-Goo;Jin, Hyeon;Ahn, Jaemyung;Lee, Yeongbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.537-543
    • /
    • 2016
  • A new approach to systematically model aerodynamic coefficients using an adaptive sampling based wind tunnel testing considering cost is proposed. The Latin Hypercube design is used for selecting initial test points. The Gaussian Process (GP) is iteratively used during the experiment to determine additional experimental points that minimizes the uncertainty reduction per incremental cost. A numerical simulation based experiment was conducted using the static aerodynamic coefficient database a fighter aircraft, which demonstrated the validity of the proposed method.