• Title/Summary/Keyword: Aerodynamic Property

Search Result 28, Processing Time 0.023 seconds

Aerodynamic Property of Swallowtail Butterfly Wing in Gliding (글라이딩하는 제비나비 날개형상의 공력특성연구)

  • Lee, Byoung-Do;Park, Hyung-Min;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.395-398
    • /
    • 2007
  • In nature, the swallowtail butterfly is known to be a versatile flyer using gliding and flapping efficiently. Furthermore, it has long tails on the hind-wing that may be associated with the enhancement of the gliding performance. In the present study, we investigate the aerodynamic property of swallowtail butterfly wing in gliding. We use an immersed boundary method and conduct a numerical simulation at the Reynolds numbers of 1,000 - 3,000 based on the free-stream velocity and the averaged chord length for seven different attack angles. As a result, we clearly identify the existence of the wing-tip and leading-edge vortices, and a pair of the streamwise vortices generated along the hind-wing tails. Interestingly, at the attack angle of $10^{\circ},$ hairpin vortices are generated above the center of the body and travel downstream.

  • PDF

A Study on Properties of Torque Control for Wind Turbine (풍력터빈 토크제어의 특성 고찰)

  • Lim, Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1157-1162
    • /
    • 2009
  • The aerodynamic torque and power caused by the interaction between the wind and blade of wind turbine are highly nonlinear. For this reason, the overall dynamic behaviors of wind turbine have nonlinear characteristics. The aerodynamic nonlinearity also affects properties of torque control for wind turbine. In this paper, the nonlinear aerodynamic property according to the wind speed below rated power and its effects on the torque control system are investigated. Nonlinear parameter representing change of aerodynamic torque with respect to rotor speed is obtained by linearization technique. Effects of this aerodynamic nonlinear parameter on the closed-loop torque system with PI controller for an 1.5 MW wind turbine are presented.

Study on Missile Aerodynamic Characteristics with Three Loop Acceleration Autopilot Structure (3-루프 가속도 오토파일롯 구조를 갖는 유도탄의 공력특성 연구)

  • Kim, Yoon-Sik;Kim, Seung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.633-638
    • /
    • 2002
  • We study how the missile autopilot with three loop acceleration structure is related to the aerodynamic characteristics. First, the relationships between the response characteristics of wingless-tail controlled missile and aerodynamics are derived. Next the maximum allowable performance limit of autopilot and the design direction for a missile shape are indicated using the property of zero. The method proposed in this paper may give a help to the missile autopilot system design and determination of the shape of aerodynamic. Also, the validity of proposed method is demonstrated via numerical example.

A Study on the Aerodynamic Analysis of Tandem Airfoil under Ground Effect (지면효과를 갖는 직렬 에어포일 주위의 공력 해석에 관한 연구)

  • Im Ye-Hoon;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.174-180
    • /
    • 1999
  • Aerodynamic characteristics of tandem airfoil under ground effect is investigated numerically. Some numerical results for NACA 6409 tandem airfoil are presented. The numerical results show that as being decreased distance between airfoils, the lift coefficient of leading airfoil is increased and that of trailing airfoil is decreased. Drag coefficient shows opposite property, At the same distance between leading airfoil and trailing airfoil, lower position of trailing airfoil give better tandem airfoil effect.

  • PDF

A Study on the Noise Property and its Reduction of the FCEV Blower (FCEV 블로워의 소음특성과 개선방향에 관한 연구)

  • Oh, Ki-Seok;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1419-1424
    • /
    • 2007
  • Centrifugal turbo blower is requested highly efficiency and low noise in FCEV, but the noise generated by this machine causes of the most serious problems in the NVH performance. In general, centrifugal turbo blower is dominated by mechanical noise and aerodynamic noise. Mechanical noise is generated by rotation of the bearing, misalignment and unbalance. And aerodynamic noise is generated by the strong intersection between the flow discharged from the impeller and the cut-off in the casing. The first object of this study is to comprehend a noise property of the blower through the noise test. And, second object is to bring up the method that can reduce blower noise.

  • PDF

A Study on the Noise Property and Its Reduction of the FCEV Blower (FCEV 블로워의 소음특성과 개선방향에 관한 연구)

  • Oh, Ki-Seok;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.516-523
    • /
    • 2008
  • Centrifugal turbo blower is requested highly efficiency and low noise in FCEV, but the noise generated by this machine causes of the most serious problems in the NVH performance. In general, centrifugal turbo blower is dominated by mechanical noise and aerodynamic noise. Mechanical noise is generated by rotation of the bearing, misalignment and unbalance. And aerodynamic noise is generated by the strong intersection between the flow discharged from the impeller and the cut-off in the casing. The first object of this study is to comprehend a noise property of the blower through the noise test. And, second object is to bring up the method that can reduce blower noise.

Nonparametric modeling of self-excited forces based on relations between flutter derivatives

  • Papinutti, Mitja;Cetina, Matjaz;Brank, Bostjan;Petersen, Oyvind W.;Oiseth, Ole
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • Unsteady self-excited forces are commonly represented by parametric models such as rational functions. However, this requires complex multiparametric nonlinear fitting, which can be a challenging task that requires know-how. This paper explores the alternative nonparametric modeling of unsteady self-excited forces based on relations between flutter derivatives. By exploiting the properties of the transfer function of linear causal systems, we show that damping and stiffness aerodynamic derivatives are related by the Hilbert transform. This property is utilized to develop exact simplified expressions, where it is only necessary to consider the frequency dependency of either the aeroelastic damping or stiffness terms but not both simultaneously. This approach is useful if the experimental data on aerodynamic derivatives that are related to the damping are deemed more accurate than the data that are related to the stiffness or vice versa. The proposed numerical models are evaluated with numerical examples and with data from wind tunnel experiments. The presented method can evaluate any continuous fitted table of interpolation functions of various types, which are independently fitted to aeroelastic damping and stiffness terms. The results demonstrate that the proposed methodology performs well. The relations between the flutter derivatives can be used to enhance the understanding of experimental modeling of aerodynamic self-excited forces for bridge decks.

Comparison of Aerodynamic Characteristics of a Thick Airfoil for Wind Turbines using XFOIL and EDISON_CFD (XFOIL과 EDISON_CFD를 이용한 풍력터빈용 두꺼운 에어포일의 공력특성 비교)

  • Kim, Seong-Uk;O, Seung-Hui;Yu, Jin-A
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.65-68
    • /
    • 2012
  • 본 연구에서는 XFOIL을 사용하여 설계된 30% 두께를 가지며 팁에서의 두께가 코드의 1.5%인 풍력터빈용 에어포일의 공력 특성을 해석하였다. 받음각에 따른 양력 항력 곡선 및 양항비를 XFOIL에서 얻어낸 결과와 EDISON_CFD 해석 결과를 상호 비교 하였다. EDISON_CFD에서의 해석을 위한 격자의 형태를 격자균일성을 생각하여 큰 타원과 작은 타원을 합쳐 만들었다. 수치 기법으로 Roe의 FDS를 선택하여 데이터를 수집하였다. 그 결과로 나타낸 압력계수와 양항비 그래프를 보면 선형 구간에서 양력은 XFOIL 해석 결과와 잘 일치하는 결과를 보여주었다. 그러나 항력에서 약1.5배 정도 EDISON_CFD의 결과가 크게 나옴으로써 양항비의 차이를 보이는 것으로 나타났다. 실속이후에서는 XFOIL의 신뢰도가 떨어지는 경향이 있어 특히 실속이후에서는 CFD의 해석결과가 필요한 것으로 보인다.

  • PDF

On wind resistant properties of Tiger Gate suspension bridge

  • Xiang, H.F.;Chen, A.R.;Song, J.Z.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 1998
  • Tiger Gate Bridge, a steel suspension bridge with a main span of 888 m and a stiffening box girder, is located at the Pearl River Estuary, Guangdong Province, one of the typhoon-prone area in China. Focusing on the developing of the full aeroelastic model of the bridge and simulation of the wind field of the bridge site in a large boundary wind tunnel at Tongji University, Shanghai, China, some main results about the wind resistant properties of the bridge including aerodynamic instability, buffeting responses both being in operation and erection stages by using of a full aeroelastic model wind tunnel testing are introduced. Some of analytical approaches to those aerodynamic behaviours are also presented, and compared with experimental data of the testing.

Numerical investigation on pressure responsiveness properties of the skirt-cushion system of an air cushion vehicle

  • Xu, Shengjie;Tang, Yujia;Chen, Kejie;Zhang, Zongke;Ma, Tao;Tang, Wenyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.928-942
    • /
    • 2020
  • The pressure responsiveness property of a skirt-cushion system, which is closely related to the overall performance of Air Cushion Vehicles (ACVs), has always been the difficulty and challenging problem involving cushion aerodynamics and flexible skirt dynamics. Based on a widely used bag and finger skirt-cushion system, the pressure responsiveness properties are investigated numerically. The physical process and mechanism are analyzed and a numerical method for evaluating the pressure responsiveness property is proposed. A cushion-skirt information communication platform is also presented for interchanging the force and the skirt configuration between cushion aerodynamics and flexible skirt dynamics. The pressure responsiveness of a typical skirt-cushion system is calculated and the results demonstrate that the pressure responsiveness property helps alleviate the influence of the cushion height changing on the overall performance of ACVs. Finally, the influences of skirt geometrical and cushion aerodynamic parameters on the pressure responsiveness properties are discussed systematically, giving insight into the design of skirt-cushion systems.