• 제목/요약/키워드: Aerodynamic Design

검색결과 1,086건 처리시간 0.026초

Parallel 3-D Aerodynamic Shape Optimization on Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.45-52
    • /
    • 2003
  • A three-dimensional aerodynamic shape optimization technique in inviscid compressible flows is developed by using a parallel continuous adjoint formulation on unstructured meshes. A new surface mesh modification method is proposed to overcome difficulties related to patch-level remeshing for unstructured meshes, and the effect of design sections on aerodynamic shape optimization is examined. Applications are made to three-dimensional wave drag minimization problems including an ONERA M6 wing and the EGLIN wing-pylon-store configuration. The results show that the present method is robust and highly efficient for the shape optimization of aerodynamic configurations, independent of the number of design variables used.

CFD를 이용한 자동차 사이드 미러의 공력특성 연구 (A Study of Aerodynamic Characteristics of a Car's Side-view Mirror using CFD)

  • 민선식;한준규;권기현;최은동;김문상
    • 항공우주시스템공학회지
    • /
    • 제2권2호
    • /
    • pp.46-50
    • /
    • 2008
  • Aerodynamic characteristics, such as drag and lift, play an important role in automobile design under certain speed conditions. Such characteristics are essential to design an automobile since they are directly related to automobile's performance such as passenger safety and fuel consumption. There is a huge demand for the automobile to have safe performance at high speed. Reduction in drag is also important and it could lead to the solution of air flow induced noise and dust problems. The objective of this research is to find out the aerodynamic differences between conventional side mirror and a modified one using CFD. Although drag generated around a side mirror is only about 7% of the total drag when a car runs, it is very closely related to driver's field of vision and noise generation. CFD simulation of the flowfield around a car side-view mirror was performed using a commercial code; Gambit and FLUENT.

  • PDF

전진익형 항공기 공력특성 증진을 위한 풍동시험 (Wind Tunnel Test to Enhance Aerodynamic Characteristics of Forward Swept Wing Airplane)

  • 정진덕;이장연;성봉주;이종원
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.800-808
    • /
    • 2004
  • Wind tunnel test of an airplane model with forward swept wing was done in KARI LSWT to evaluate and measure the aerodynamic characteristics of initially designed configuration. Since the given wing planform did not fully satisfy the design requirements, local flow control devices such as vortilon, vortex generator and flow fence were used to delay separation and to enhance aerodynamic characteristics. Also decision making processes of design parameters such as vertical tail boom length, the location, size and the incidence angle of horizontal tail were discussed. The general aerodynamic characteristics of forward swept wing for various control surface deflection conditions of flap, aileron and elevator were also given.

천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발 (DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME)

  • 이병준;이준석;임진우;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF

공력-구조-RF 스텔스 통합 전산해석 시스템 연구 (AN INTEGRATED SYSTEM FOR COMPUTATIONAL AERODYNAMIC, STRUCTURAL AND RF STEALTH ANALYSIS)

  • 박경린;양영록;정성기;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.78-82
    • /
    • 2010
  • An integrated multi-disciplinary design system plays a critical role in the preliminary design of an aircraft. In this paper such system is developed for the multi-disciplinary computation and design; aerodynamics elasticity, and radio frequency stealth. Common data base of geometry and structured grids is generated and used for aerodynamic, structural and eletromagnetics analysis. The Navier-Stokes CFD, FEM, and CEM technique are used for aerodynamic, structural, and RF stealth computations respectively.

  • PDF

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.

헬리콥터 로터 블레이드 예비설계를 위한 에어포일 공력 해석 (Airfoil Aerodynamic Analysis for the Helicopter Rotor Blade Preliminary Design)

  • 김상진
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.21-30
    • /
    • 2005
  • 헬리콥터 로터 블레이드 예비설계 단계에서 에어포일 선정과 분포의 기초 자료를 생성하기 위해 로터 에어포일 공력해석을 수행하였다.기존 헬리콥터의 에어포일 중 공력해석 대상으로 10개를 선정하고 블레이드 요소이론을 이용한 공력해석에 적합한 table 형태의 공력계수 자료를 생성하였다. 해석 비용을 고려, 풍동시험 대신 간단한 수학적 모델을 이용하여 모든 받음각 영역($-180^{o}\sim180^{o}$)에서 공력특성 곡선($C_{l},C_{m},C_{d}$)을 구성하였다. 공력특성곡선 구성에 필요한 각 에어포일의 필수 공력자료를 IBLM을 이용하여 구하였으며, 구성된 공력특성곡선은 실험결과와 정성적으로 일치하였다. 마지막으로, 에어포일 선정과 분포설계의 기준을 마련하기 위하여 각 에어포일의 양력계수, 모멘트계수를 상호 비교한 후 분류하였다.

주행중인 자동차 간의 공력 간섭현상 연구 (Study of Aerodynamic Interference between Running Cars)

  • 이민준;차두근;배희정;권기현;김지웅;김문상
    • 항공우주시스템공학회지
    • /
    • 제4권2호
    • /
    • pp.26-31
    • /
    • 2010
  • Reduction of the aerodynamic drag is one of the most hot issues of car industries. Many researchers have studied in the area of drag reduction methodology using experimental tools or numerical tools. In general, car shape design is the main focus to reduce the drag in aerodynamic research area. However, not many people have studied the aerodynamic interference between running cars to figure out the drag variation. In this research, the aerodynamic interference between two running cars have been analyzed by using numerical tools, FLUENT 6.2. Several different models of cars and two different distances between two running cars are considered.

  • PDF

공기저항과 미기압파 저감을 위한 고속전철 전두부형상의 최적화설계 (Nose Shape Optimization of the High-speed Train to Reduce the Aerodynamic drag and Micro-pressure Wave)

  • 권혁빈;김유신;이동호;김문상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.373-379
    • /
    • 2001
  • When a train runs into a tunnel at high-speed, aerodynamic drag suddenly increases and the booming noise is generated at the exit of tunnel. The noise shape is very important to reduce the aerodynamic drag in tunnel as well as on open ground, and the micro-pressure wave that is a source of booming noise is dependent on nose shape, especially on area distribution. In this study, the nose shape has been optimized employing the response surface methodology and the axi-symmetric compressible Navier-Stokes equations. The optimal designs have been executed imposing various conditions of the aerodynamic drag and the micro-pressure wave on object functions. The results show that the multi-objective design was successful to decrease micro-pressure wave and aerodynamic drag of trains.

  • PDF

전산유동해석에 의한 발사체 공력 특성 예측에 관한 연구 (A Study on the Prediction of the Aerodynamic Characteristics of a Launch Vehicle Using CFD)

  • 김영훈;옥호남;김인선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 2004
  • A space launch vehicle departs the ground in a low speed, soon reaches a transonic and a supersonic speed, and then flies in a hypersonic speed into the space. Therefore, the design of a launch vehicle should include the prediction of aerodynamic characteristics for all speed regimes, ranging from subsonic to hypersonic speed. Generally, Empirical and analytical methods and wind tunnel tests are used for the prediction of aerodynamic characteristics. This research presents considerable factors for aerodynamic analysis of a launch vehicle using CFD. This investigation was conducted to determine effects of wake over the base section on the aerodynamic characteristics of a launch vehicle and also performed to determine effects of the sting which exist to support wind tunnel test model.

  • PDF