• Title/Summary/Keyword: Aerodynamic Data

Search Result 601, Processing Time 0.027 seconds

Korean Adult Normative Data for the KayPENTAX Phonatory Aerodynamic System Model 6600 (KayPENTAX Phonatory Aerodynamic System Model 6600을 이용한 한국 성인의 공기역학적 변수들의 정상치)

  • Kim, Jaeock
    • Phonetics and Speech Sciences
    • /
    • v.6 no.1
    • /
    • pp.105-117
    • /
    • 2014
  • The purpose of this study was to (1) establish a Korean adult normative database for phonatory aerodynamic measures obtained with the KayPENTAX Phonatory Aerodynamic System (PAS) Model 6600, (2) investigate the intra-subject reliability of these measures across three testing sessions, and (3) examine the effect of gender on those measures. 170 healthy normal speakers (70 men and 100 women) between the ages 18 and 49 years participated in the study. The PAS protocol of maximum phonation and voicing efficiency were conducted and 25 measures were obtained. All aerodynamic measures taken in this study demonstrated high intra-subject reliability in clinical aspect. There were no significant effect of gender in the measures related to sound pressure and subglottal pressure. However, significant differences for gender were found for phonation time, airflow rate, expiratory volume, aerodynamic power, SPL range, pitch range, mean pitch, aerodynamic resistance, and aerodynamic efficiency. Clinicians should be aware of significant gender effects in some aerodynamic parameters when interpreting the data obtained from PAS.

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.

Study of Flight Simulation using Real-Time Aerodynamic Model (실시간 공력모델을 이용한 비행 시뮬레이션 연구)

  • Lee, Chang Ho;Park, Young Min;Choi, Hyoung Sik
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.

AERODYNAMIC DESIGN OF A VANE TYPE MULTI-FUNCTION AIR DATA SENSOR (베인형 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C;Hwang, I.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.43-49
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore major performances are determined by aerodynamic characteristics of vane. In oder to design the sensor compatible to the requirement, aerodynamic characteristics of sensors was investigated by using CFD and dynamic response analysis was also performed for trasient performance. The final aerodynamic performance was measured by the wind tunnel test at Aeorsonic and the results successfully used for the design of vane type multi-function air data sensor.

  • PDF

Development of an Unsteady Aerodynamic Analysis Module for Rotor Comprehensive Analysis Code

  • Lee, Joon-Bae;Yee, Kwan-Jung;Oh, Se-Jong;Kim, Do-Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.23-33
    • /
    • 2009
  • The inherent aeromechanical complexity of a rotor system necessitated the comprehensive analysis code for helicopter rotor system. In the present study, an aerodynamic analysis module has been developed as a part of rotorcraft comprehensive program. Aerodynamic analysis module is largely classified into airload calculation routine and inflow analysis routine. For airload calculation, quasi-steady analysis model is employed based on the blade element method with the correction of unsteady aerodynamic effects. In order to take unsteady effects - body motion effects and dynamic stall - into account, aerodynamic coefficients are corrected by considering Leishman-Beddoes's unsteady model. Various inflow models and vortex wake models are implemented in the aerodynamic module to consider wake induced inflow. Specifically, linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's induced inflow distribution and sectional normal force coefficients of AH-1G. In order to validate unsteady aerodynamic model, 2-D unsteady model for NACA0012 airfoil is validated against aerodynamic coefficients of McAlister's experimental data.

Study of an AI Model for Airfoil Parameterization and Aerodynamic Coefficient Prediction from Image Data (이미지 데이터를 이용한 익형 매개변수화 및 공력계수 예측을 위한 인공지능 모델 연구)

  • Seung Hun Lee;Bo Ra Kim;Jeong Hun Lee;Joon Young Kim;Min Yoon
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The shape of an airfoil is a critical factor in determining aerodynamic characteristics such as lift and drag. Aerodynamic properties of an airfoil have a decisive impact on the performance of various engineering applications, including airplane wings and wind turbine blades. Therefore, it is essential to analyze the aerodynamic characteristics of airfoils. Various analytical tools such as experiments, computational fluid dynamics, and Xfoil are used to perform these analyses, but each tool has its limitation. In this study, airfoil parameterization, image recognition, and artificial intelligence are combined to overcome these limitations. Image and coordinate data are collected from the UIUC airfoil database. Airfoil parameterization is performed by recognizing images from image data to build a database for deep learning. Trained model can predict the aerodynamic characteristics not only of airfoil images but also of sketches. The mean absolute error of untrained data is 0.0091.

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

Numerical investigation of flow structures and aerodynamic pressures around a high-speed train under tornado-like winds

  • Simin Zou;Xuhui He;Teng Wu
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.295-307
    • /
    • 2024
  • The funnel-shaped vortex structure of tornadoes results in a spatiotemporally varying wind velocity (speed and direction) field. However, very limited full-scale tornado data along the height and radius positions are available to identify and reliably establish a description of complex vortex structure together with the resulting aerodynamic effects on the high-speed train (HST). In this study, the improved delayed detached eddy simulation (IDDES) for flow structures and aerodynamic pressures around an HST under tornado-like winds are conducted to provide high-fidelity computational fluid dynamics (CFD) results. To demonstrate the accuracy of the numerical method adopted in this study, both field observations and wind-tunnel data are utilized to respectively validate the simulated tornado flow fields and HST aerodynamics. Then, the flow structures and aerodynamic pressures (as well as aerodynamic forces and moments) around the HST at various locations within the tornado-like vortex are comprehensively compared to highlight the importance of considering the complex spatiotemporal wind features in the HST-tornado interactions.

Aerodynamic Study in Korean Western Classical Singers (서양음악을 전공으로 하는 성악인에서의 공기역학적 검사)

  • 정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.9 no.2
    • /
    • pp.109-114
    • /
    • 1998
  • Background and Objectives : Aerodynamic investigation is valuable information about the efficiency of the larynx in translating air pressure to acoustic signal. The normal data of the Korean has been reported, but there is no basic data of professional western classical singers who have learned how to control the flow of expiratory air for singing. The purpose of this study was to investigate the normal aerodynamic data of korean professional western classical singers and compare this with that of the Korean Materials and Methods : 50 Korean western classical singers were studied. Expiratory lung pressure combined with measurements of the mean air flow rate, voice frequency and intensity were measured with the aerodynamic test using airway interruption method. These data were compared with normal data of untrained normal adults. Results and Conclusions : The voice frequency and the voice intensity were increased in the western classic singers, but the mean air flow rate and the expiratory air pressure of the classical singers were within the same range of the untrained normal adults. This result means that western classical singers can change the loudness and pitch with a little increased or decreasing the mean air flow and the expiratory air pressure.

  • PDF

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.