• 제목/요약/키워드: Aerobic stability

Search Result 132, Processing Time 0.027 seconds

Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

  • Wang, Huili;Ning, Tingting;Hao, Wei;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.62-72
    • /
    • 2016
  • This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages.

Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

  • Hao, W.;Wang, H.L.;Ning, T.T.;Yang, F.Y.;Xu, C.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.816-826
    • /
    • 2015
  • The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from $10^7$ to $10^{10}cfu/g$ during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to $10^9cfu/g$ DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage

  • Wang, Huili;Hao, Wei;Ning, Tingting;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.198-207
    • /
    • 2018
  • Objective: This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. Methods: Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencing analyses of the 26S rRNA gene D1/D2 domain. Characteristics (assimilation and tolerance) of the yeast species and their role during aerobic deterioration were investigated. Results: In addition to species of Candida glabrata and Pichia kudriavzevii (P. kudriavzevii) previously isolated in WCC and TMR, Pichia manshurica (P. manshurica), Candida ethanolica (C. ethanolica), and Zygosaccharomyces bailii (Z. bailii) isolated at great frequency during deterioration, were capable of assimilating lactic or acetic acid and tolerant to acetic acid and might function more in deteriorating TMR silages at early fermentation (7 d and 14 d). With ensiling prolonged to 28 d, silages became more (p<0.01) stable when exposed to air, coinciding with the inhibition of yeast to below the detection limit. Species of P. manshurica that were predominant in deteriorating WCC silages were not detectable in TMR silages. In addition, the predominant yeast species of Z. bailii in deteriorating TMR silages at later fermentation (28 d and 56 d) were not observed in both WCC and WCC silages. Conclusion: The inhibition of yeasts, particularly P. kudriavzevii, probably account for the improved aerobic stability of TMR silages at later fermentation. Fewer species seemed to be involved in aerobic deterioration of silages at later fermentation and Z. bailii was most likely to initiate the aerobic deterioration of TMR silages at later fermentation. The use of WCC in TMR might not influence the predominant yeast species during aerobic deterioration of TMR silages.

Effects of calcium propionate on the fermentation quality and aerobic stability of alfalfa silage

  • Dong, Zhihao;Yuan, Xianjun;Wen, Aiyou;Desta, Seare T.;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1278-1284
    • /
    • 2017
  • Objective: To assess the potency of calcium propionate (CAP) used as silage additive, an experiment was carried out to evaluate the effect of CAP on the nitrogen transformation, fermentation quality and aerobic stability of alfalfa silages. Methods: Alfalfa was ensiled with four levels of CAP (5, 10, 15, and 20 g/kg of fresh weight [FW]) in laboratory silos for 30 days. After opening, the silages were analyzed for the chemical and microbiological characteristics, and subjected to an aerobic stability test. Results: The increasing proportion of CAP did not affect pH, lactic acid (LA) concentrations and yeast counts, while linearly decreased counts of enterobacteria (p = 0.029), molds (p<0.001) and clostridia (p<0.001), and concentrations of acetic acid (p<0.001), propionic acid (p<0.001), butyric acid (p<0.001), and ethanol (p = 0.007), and quadratically (p = 0.001) increased lactic acid bacteria counts. With increasing the proportion of CAP, the dry matter (DM) loss (p<0.001), free amino acid N (p<0.001), ammonia N (p = 0.004), and non-protein N (p<0.001) contents were linearly reduced, whereas DM (p = 0.048), water soluble carbohydrate (p<0.001) and peptide N (p<0.001) contents were linearly increased. The highest Flieg's point was found in CAP10 (75.9), represented the best fermentation quality. All silages treated with CAP improved aerobic stability as indicated by increased stable hours compared with control. Conclusion: The addition of CAP can suppress the undesirable microorganisms during ensiling and exposure to air, thereby improving the fermentation quality and aerobic stability as well as retarding the proteolysis of alfalfa silage. It is suggested that CAP used as an additive is recommended at a level of 10 g/kg FW.

Effects of Cutting Length on Fermentation Characteristics and Aerobic Stability of Whole Crop Rice Silage

  • Lee, Seong Shin;Joo, Young Ho;Choi, Jeong Seok;Jeong, Seung Min;Paradhipta, Dimas Hand Vidya;Noh, Hyeon Tak;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.155-161
    • /
    • 2021
  • This study was conducted to estimate the effect of different cutting lengths on fermentation characteristics and aerobic stability of whole crop rice (WCR) silage. The WCR was harvested at the yellow ripe stage (43.7%, DM), and then cut at 5 (R05), 10 (R10), and 20 cm (R20) of the theoretical length of cut with no cut WCR (R60). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 150 days in quadruplicates. The cutting lengths were not affected the chemical compositions of WCR silage (p > 0.05). The pH (p < 0.001) and concentration of ammonia-N (p = 0.022) in WCR silage were increased linearly with the increase of cutting length. The concentration of lactate had quadratic effect (p = 0.007), which was highest in R20 silage (p < 0.05). The concentration of acetate was increased linearly (p = 0.014), but the concentration of butyrate was decreased linearly (p = 0.033). The lactic acid bacteria count was decreased linearly (p = 0.017), and yeast count had quadratic effect (p = 0.009), which was the highest in R20 silage (p < 0.05). Aerobic stability had strong quadratic effect (p < 0.001), which was the highest in R20 silage (p < 0.05). In conclusion, R60 silage had highest pH by a linear increase of ammonia-N concentration and led to low aerobic stability. While R20 silage had the lowest pH by high lactate concentration and led to high aerobic stability.

Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet

  • Chen, Lei;Guo, Gang;Yuan, Xianjun;Shimojo, Masataka;Yu, Chengqun;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2014
  • The objective of this study was to evaluate the effects of molasses and propionic acid on the fermentation quality and aerobic stability of total mixed ration (TMR) silages prepared with whole-plant corn in Tibet. TMR (354 g/kg DM) was ensiled with four different treatments: no additive (control), molasses (M), propionic acid (P), and molasses+propionic acid (PM), in laboratory silos (250 mL) and fermented for 45 d. Silos were opened and silages were subjected to an aerobic stability test for 12 days, in which chemical and microbiological parameters of TMR silages were measured to determined the aerobic deterioration. After 45 d of ensiling, the four TMR silages were of good quality with low pH value and ammonia/total N (AN), and high lactic acid (LA) content and V-scores. M silage showed the highest (p<0.05) LA content and higher dry matter (DM) recovery than the control and P silages. P silage had lower (p<0.05) LA content than the control silage. During aerobic exposure, lactic acid contents decreased gradually in the control and M silages, while that of P and PM silages increased, and the peak values were observed after 9 d. M silage had similar yeast counts with the control silage (> $10^5$ cfu/g FM), however, it appeared to be more stable as indicated by a delayed pH value increase. P and PM silages showed fewer yeasts (< $10^5$ cfu/g FM) (p<0.05) and were more stable than the control and M silages during aerobic exposure. It was concluded that M application increased LA content and improved aerobic stability of TMR silage prepared with whole-plant corn in Tibet. P application inhibited lactic acid production during ensiling, and apparently preserved available sugars which stimulated large increases in lactic acid during aerobic exposure stage, which resulted in greater aerobic stability of TMR silage.

The Effect of Bacterial Inoculants and a Chemical Preservative on the Fermentation and Aerobic Stability of Whole-crop Cereal Silages

  • Filya, Ismail;Sucu, Ekin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.378-384
    • /
    • 2007
  • Three microorganisms and one chemical preservative were tested for their effects on the fermentation and aerobic stability of whole-crop wheat, sorghum and maize silages. Wheat at the early dough stage, sorghum at the late milk stage and maize at the one-third milk line stage were harvested and ensiled in 1.5-l anaerobic jars untreated or after the following treatments: control (no additives); Lactobacillus plantarum (LP) at $1.0{\times}10^6$ colony-forming units (CFU)/g of fresh forage; L. buchneri (LB) at $1.0{\times}10^6$ CFU/g; Propionibacterium acidipropionici (PA) at $1.0{\times}10^6$ CFU/g; and a formic acid-based preservative (FAP) at 3 ml/kg of fresh forage weight. Three jars per treatment were sampled on d 90 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 90 d, the silages were subjected to an aerobic stability test lasting 5 d. In this test, $CO_2$ produced during aerobic exposure was measured along with chemical and microbiological parameters which serve as spoilage indicators. The silages inoculated with LP had higher concentration of lactic acid compared with the controls and the other treated silages (p<0.05). The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages. The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages due to more $CO_2$ production (p<0.05) in these two groups and development of yeasts unlike the other groups. In the experiment, the silages treated with LB, PA and FAP were stable under aerobic conditions. However, the numbers of yeasts was higher in the LP-inoculated wheat, sorghum and maize silages compared with the LB, PA and FAP-treated silages. The LB, PA and FAP improved the aerobic stability of the silages by causing more extensive heterolactic fermentation that resulted in the silages with high levels of acetic and propionic acid. The use of LB, PA and FAP as silage additives can improve the aerobic stability of whole-crop wheat, sorghum and maize silages by inhibition of yeast activity.

Evaluating fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration ensiled with different additives on Tibet plateau

  • Dong, Zhihao;Wang, Siran;Zhao, Jie;Li, Junfeng;Liu, Qinhua;Bao, Yuhong;Shao, Tao
    • Animal Bioscience
    • /
    • v.34 no.2
    • /
    • pp.223-232
    • /
    • 2021
  • Objective: To investigate the improvement in utilization efficiency of total mixed ration (TMR) on Tibetan plateau, TMR were ensiled with different additives. Methods: A total of 150 experimental silos were prepared in a completely randomized design to evaluate the six treatments: i) control (without additive), ii) Lactobacillus buchneri (L. buchneri), iii) acetic acid, iv) propionic acid, v) 1,2-propanediol; and vi) 1-propanol. After 90 days of ensiling, silos were opened for fermentation quality and in vitro analysis, and then subjected to an aerobic stability test for 14 days. Results: Treating with L. buchneri, acetic acid, 1,2-propanediol and 1-propanol decreased propionic acid contents and yeast number, whereas increased (p<0.05) pH, acetic acid and ethanol contents in the fermented TMR. Despite increased dry matter (DM) loss in the TMRs treated with 1,2-propanediol and 1-pronanol, additives did not affect (p>0.05) all in vitro parameters including gas production at 24 h (GP24), GP rate constant, potential GP, in vitro DM digestibility and in vitro neutral detergent fibre digestibility. All additives improved the aerobic stability of ensiled TMR to different extents. Specially, aerobic stability of the ensiled TMR were substantially improved by L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol, indicated by stable pH and lactic acid content during the aerobic stability test. Conclusion: L. buchneri, acetic acid, 1,2-propanediol, and 1-propanol had no adverse effect on in vitro digestibility, while ensiling TMR with the additives produced more acetic acid and ethanol, subsequently resulting in improvement of aerobic stability. There is a potential for some fermentation boosting additives to enhance aerobic stability of fermented TMR on Tibetan plateau.

Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

  • Li, Y.;Wang, F.;Nishino, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.516-522
    • /
    • 2016
  • We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56- day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents.

Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage

  • Dong, Zhihao;Wang, Siran;Zhao, Jie;Li, Junfeng;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1292-1300
    • /
    • 2020
  • Objective: To explore feed resources capable of replacing regular poor-quality fodder, this study was conducted to evaluate the effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry leaves silage. Methods: The mulberry leaves were ensiled either untreated (control) or treated with 1×106 cfu/g fresh matter Lactobacillus plantarum (L), 1% glucose (G), 3% molasses (M), a combination of 1% glucose and Lactobacillus plantarum (L+G), and a combination of 3% molasses and Lactobacillus plantarum (L+M). The fermentation quality and chemical composition were analyzed after 7, 14, 30, and 60 d, respectively. The 60-d silages were subjected to an aerobic stability test and fermented with buffered rumen fluid to measure the digestibility. Results: Inoculating lactic acid bacteria (LAB) resulted in more rapid increase in lactic acid concentrations and decline in pH of mulberry leaves silage as compared control. Higher acetic acid and lower ethanol and ammonia nitrogen concentrations (p<0.05) were observed in the LAB-inoculated silages as opposed to control during ensiling. The LAB-inoculated silages contained lower water-soluble carbohydrates compared with control during the first 14 d of ensiling, and lower neutral detergent fibre (p<0.05) concentrations as compared with non-LAB inoculated silages. Adding molasses alone increased (p<0.05) the digestibility of dry matter (DM). The aerobic stability of mulberry leaves silage was increased by LAB inoculation, whereas decreased by adding glucose or molasses. Conclusion: The LAB inoculation improved fermentation quality and aerobic stability of mulberry leaves silage, while adding glucose or molasses failed to affect the fermentation and impaired the aerobic stability. Inoculating LAB alone is recommended for mulberry leaves especially when ensiled at a relatively high DM.