• Title/Summary/Keyword: Aerobic phase

Search Result 108, Processing Time 0.025 seconds

Relationship between Phosphorus Release and Intracellular Storage Polymer Synthesis by Phosphorus Accumulating Organisms (인축적 미생물의 인방출과 세포내 저장물질 합성관계)

  • Shin, Eung-Bai;Kim, Mee-Kyung;Hong, Jun-Hyeok;Kong, Dong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.692-697
    • /
    • 2004
  • Biological phosphorus removal is characterized by complex interactions between different intracellular components of energy as PHA. Therefore, fundamental understanding of the behavior of the intracellular components and their influence on the removal of phosphorus is essential before control strategies to stabilize the proper process. The purpose of this study is to investigate relationship between release of phosphorus and synthesis of intracellular storage polymer. Mass of stored intracellular storage polymer was 21.2 mg PHA/L, 28.8 mg PHA/g MLSS. And phosphorus release/intracellular storage polymer synthesis rate was 1.8545 mg stored polymer/mg Phosphate. In the aerobic phase, mass of PAOs synthesis is 49.37 mg PAOs/L. And PAOs fraction was 6.7-6.9%. Thus intracellular storage polymer synthesis by PAOs is calculated as 493mg PHA/g PAOs.

Physiological Responses of Oxygen-Tolerant Anaerobic Bifidobacterium longum under Oxygen

  • Ahn, Jun-Bae;Hwang, Han-Joon;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.443-451
    • /
    • 2001
  • In order to investigate what kind of response anaerobic bifidobacteria has on oxygen stress, five oxygen-tolerant bifidobacteria were isolated from human fecal samples. All were temporarily identified as Bifidobacterium longum through an analysis of carbohydrate utilization patterns and cellular fatty acid profiles. In the presence of oxygen, the lag phase became extended and the cell growth was suppressed. Bifidobacterial cell was able to remove dissolved oxygen in an early stage of growth and to overcome oxygen stress to a certain extent. The cell became long n size and showed a rough surface containing many nodes which were derived from abnormal or incomplete cell division. Cellular fatty acid profiled changed remarkably under a partially aerobic condition, so that the carbon chain of cellular fatty acid became short. All the dimethyl acetals originated from plasmalogen were reduced, any cyclopropane fatty acid, 9, 10-methyleneoctadecanoic acid ($C_{19:0}cyc9,10$), was increased remarkably. Oxygen stress induced a 5.5 kD protein in B. longum JI 1 of the oxygen-teolerant bifidobacteria, that was named Osp protein, and its N-terminal amino acid sequence was as follows: unknown amino acid-Thr-Gly-Val-Arg-Phe-Ser-Asp-Asp-Glu. Therefore, the oxygen-tolerant bifidobacteria seemed to defend against oxygen stress byincreasing the content of short fatty acid and cyclopropane fatty acid, and induction of an oxygen stress protein, but not the plasmalogen.

  • PDF

A Methylobacillus Isolate Growing Only on Methanol (메탄올만 이용하여 성장하는 Methylobacillus의 분리 및 특성)

  • 김시욱;김병홍;김영민
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.250-257
    • /
    • 1991
  • An obligate methanol-oxidizing bacterium, Methylobacillus sp. strain SK1, which grows only on methanol was isolated from soil. The isolate was nonmotile Gram-negtive rod. It does not have internal membrane system. The colonies were small, whitish-yellow, and smooth. The guanine plus cytosine content of the DNA was 48 mol%. Cellular fatty acids consisted predominantly of large amounts of straight-chain saturated $C_{16:0}$ acid and unsaturated $C_{16:1}$ acid. The major ubiquinone was Q-8, and Q-10 was present as minor component. The cell was obligately aerobic and exhibited catalase, but no oxidase, activity. Poly-.betha.-hydroxybutyrate, endospores, or cysts were not observed. the isolate could grow only on methanol in mineral medium. Growth factors were not required. The isolate was unable to use methane, formaldehyde, formate, methylamine, and several other organic compounds tested as a sole source of carbon and energy. Growth was optimal at 35.deg.C and pH 7.5. It could not grow at 42.deg.C. The doubling time was 1.2h at 30.deg.C when grown with 1.0%(v/v) methanol. The growth was not affected by antibiotics inhibiting cell wall synthesis and carbon monoxide but was completely suppressed by those inhibiting protein synthesis. Methanol was found to be assimilated through the ribulose monophosphate pathway. Cytochromes of b-, c-, and o- types were found. Cell-free extracts contained a phenazine methosulfate-linked methanol dehydrogenase activity, which required ammonium ions as an activator. Cells harvested after the late exponential phase seemed to contain blue protein.ein.

  • PDF

Kinetic Biodegradation of Polycyclic Aromatic Hydrocarbons for Five Different Soils under Aerobic Conditions in Soil Slurry Reactors

  • Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.581-588
    • /
    • 2021
  • In this study, soil slurry bioreactors were used to treat soils containing 16 polycyclic aromatic hydrocarbons (PAHs) for 35 days. Five different soil samples were taken from manufactured gas plant (MGP) and coal tar disposal sites. Soil properties, such as carbon content and particle distribution, were measured. These properties were significantly correlated with percent biodegradation and degradation rate. The cumulative amount of PAH degraded (P), degradation rate (Km), and lag phase (𝜆) constants of PAHs in different MGP soils for 16 PAHs were successfully obtained from nonlinear regression analysis using the Gompertz equation, but only those of naphthalene, anthracene, acenaphthene, fluoranthene, chrysene, benzo[k]fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are presented in this study. A comparison between total non-carcinogenic and carcinogenic PAHs indicated higher maximum amounts of PAH degraded in the former than that in the latter owing to lower partition coefficients and higher water solubilities (S). The degradation rates of total non-carcinogenic compounds for all soils were more than four times higher than those of total carcinogenic compounds. Carcinogenic PAHs have the highest partitioning coefficients (Koc), resulting in lower bioavailability as the molecular weight (MW) increases. Good linear relationships of Km, 𝜆, and P with the octanol-water partitioning coefficient (Kow), MW, and S were used to estimate PAH remaining, lag time, and biodegradation rate for other PAHs.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process (혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리)

  • Ha, Jeong Hyub;Choi, Suk Soon;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.613-619
    • /
    • 2018
  • In this study, various influent sludge pre-treatment methods and the internal recirculation of thickened sludge from effluents using a liquid/solid separation unit were adopted to investigate their effects on the sludge digestion and methane production in a combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale combined sludge digestion process was operated during 5 phases using different feed sludge pre-treatment strategies. In phase 1, the feed sludge was pre-treated with a thermal-alkaline method. In contrast, in phases 2, 3 and 4, the internal recirculation of thickened sludge from the effluent and thermal-alkaline, thermal, and alkaline pre-treatment (7 days) were applied to the combined process. In phase 5, the raw sludge without any pre-treatment was used to the combined process. With the feed sludge pre-treatment and internal recirculation, the experimental results indicated that the volatile suspended solid (VSS) removal was drastically increased from phases 1 to 4. Also, the methane production rate with the thermal-alkaline pre-treatment and internal recirculation was significantly improved, showing an increment to 285 mL/L/day in phase 2. Meanwhile, the VSS removal and methane production in phase 5 were greatly decreased when the raw sludge without any pre-treatment was applied to the combined process. Considering all together, it was concluded that the combined process with the thickened sludge recirculation and thermal-alkaline pre-treatment can be successfully employed for the highly efficient sewage sludge reduction and methane gas production.

Reduction of Hydraulic Conductivity in the Subsurface by the Formation of Aerobic Biobarrier (토양 내 호기성 생물벽체(Biobarrier)의 형성에 의한 투수계수의 제어)

  • Bae, Bum-Han;Oh, Je-Ill
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • A series of batch and column experiments were conducted for the development of biobarrier technology which can be applied to containment and reduction of contaminants in soil and ground waters. The growth kinetic constants of Pseudomonas fluorescens on glucose or molasses were determined using batch experiments. The maximum specific growth rate (Vmax) of P. fluorescens at $23^{\circ}C$ on glucose or molasses were $0.246\;hr^{-1}$ and $0.073\;hr^{-1}$, respectively. However, molasses was selected as carbon source due largely to the absence of lag phase of P. fluorescens growth on molasses and economic reason. In constant head column experiments, the hydraulic conductivity of the column soil reduced by $6.8{\times}10^{-3}$ times from $4.1{\times}10^{-2}cm/sec$ to $2.8{\times}10^{-4}cm/sec$ after the inoculation of P. fluorescens and administration of carbon source and nutrients. The biomass concentration was observed highest in the column inlet. Measurements of carbon source and electron accepter (dissolved oxygen) concentration showed that the growth of P. fluorescence, which is the main reason for hydraulic conductivity reduction, was limited not by the concentration of carbon source but by the concentration of electron acceptor.

Biological Treatment of Raw Water for Organics Removal (생물학적(生物學的) 처리(處理)에 의한 원수(原水)의 유기물제거(有機物除去)에 관한 연구(研究))

  • Cho, Kwang Myeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.43-50
    • /
    • 1986
  • A research was performed to examine the applicability of aerobic fixed-biofilm reactors for removal of biodegradable organics in raw waters. Crushed briquette ashes or granite were utilized as media. Experiments were carried out by feeding packed bed reactors with a synthetic raw water prepared by dissolving phenol in tap water with other inorganic nutrients. Results of the research showed that the effluent TBOD concentrations were lower than 6 mg/l when the influent BOD concentrations were kept below 50 mg/l and a detention time of about 2.7 hours was provided. The SBOD concentrations of the treated waters should be less than 5 mg/l since the effluent SS could be removed by conventional water treatment methods such as coagulation and filtration. It was also found that most of the SS in the effluents were humic materials since the effluent SS caused little BOD. This means the biofilm in the reactor was in endogenous respiration phase due to low F/M ratio. According to the results of this study, it is recommended to pretreat any raw water contaminated with biodegradable organics in an aerobic fixed biofilm reactor with a detention time of 2 to 3 hours.

  • PDF

Dichloroacetate Inhibits the Proliferation of a Human Anaplastic Thyroid Cancer Cell Line via a p53-independent Pathway (Dichloroacetate의 p53 비의존적 경로를 통한 인간 역분화 갑상선 암세포주의 성장억제 효과)

  • KC, Yam Bahadur;Poudel, Sunil;Jeon, Eon Ju;Shon, Ho Sang;Byun, Sung June;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1469-1476
    • /
    • 2018
  • Occurrence of the Warburg effect in solid tumors causes resistance to cancer chemotherapy, and targeting energy metabolisms such as aerobic glycolysis is a potential strategy for alternative treatment. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), shifts glucose metabolism from aerobic glycolysis to oxidative phosphorylation (OxPhos) in many cancers. In this study, we investigated the anticancer effect of DCA on a human anaplastic thyroid cancer (ATC) cell line, 8505C. We found that DCA selectively inhibits cell proliferation of the 8505C line but not of a normal thyroid line. In 8505C, the cell cycle was arrested at the G1/S phase with DCA treatment as a result of decreased antiapoptotic proteins such as $HIF1{\alpha}$, PDK1, and Bcl-2 and increased proapoptotic proteins such as Bax and p21. DCA treatment enhanced the production of reactive oxygen species which consequently induced cell cycle arrest and apoptosis. Interestingly, DCA treatment not only reduced lactate production but also increased the expression of sodium-iodine symporter, indicating that it restores the OxPhos of glucose metabolism and the iodine metabolism of the ATC. Taken together, our findings suggest that PDK inhibitors such as DCA could be useful anticancer drugs for the treatment of ATC and may also be helpful in combination with chemotherapy and radiotherapy.

통성혐기성 수소생산균주를 이용한 수소생산효율에 미치는 glucose 및 sucrose 농도의 영향

  • Lee, Eun-Yeong;Lee, Tae-Ho;Ryu, Hui-Uk;Lee, Cheol-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.375-378
    • /
    • 2002
  • Hydrogen producing bacterium, strain Ye13-6 was isolated from the sludge of the factory areas in Gunpo through the acclimation in basal salt medium(BSM) supplemented with 10g/ ${\ell}$ of sucrose. Isolated strain Ye13-6 was a facultative anaerobe which could grow in both aerobic and anaerobic environments. Effects of the concentrations of glucose and sucrose on the hydrogen production rate and the hydrogen production yield were investigated. When glucose in the range of 1${\sim}$12g/ ${\ell}$ was supplemented to the BSM, strain Ye13-6 could grow without lag phase. An increased glucose concentration increased the specific hydrogen production rate linearly to 60mmol-$H_2$ ${\cdot}$ mg-$DCW^{-1}$ ${\cdot}$ $h^{-1}$. The hydrogen production yield was maintained over a range from 2.6 to 3.1mol-$H_2$ ${\cdot}$ mol-$glucose^{-1}$. When sucrose in the range of 1${\sim}$12g/ ${\ell}$ was supplemented to the BSM, strain Ye13-6 could grow after ten hours. An increased sucrose concentration increased the specific hydrogen production rate and the hydrogen production yield to 163mmol-$H_2$ ${\cdot}$ mg-$DCW^{-1}$ ${\cdot}$ $h^{-1}$ and to 4.5mol-$H_2$ ${\cdot}$ mol-$sucrose^{-1}$, respectively.

  • PDF