• Title/Summary/Keyword: Aerobic phase

Search Result 108, Processing Time 0.047 seconds

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF

Kinetic Behavior of Salmonella on Low NaNO2 Sausages during Aerobic and Vacuum Storage

  • Ha, Jimyeong;Gwak, Eunji;Oh, Mi-Hwa;Park, Beomyoung;Lee, Jeeyeon;Kim, Sejeong;Lee, Heeyoung;Lee, Soomin;Yoon, Yohan;Choi, Kyoung-Hee
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.262-266
    • /
    • 2016
  • This study evaluated the growth kinetics of Salmonella spp. in processed meat products formulated with low sodium nitrite (NaNO2). A 5-strain mixture of Salmonella spp. was inoculated on 25-g samples of sausages formulated with sodium chloride (NaCl) (1.0%, 1.25%, and 1.5%) and NaNO2 (0 and 10 ppm) followed by aerobic or vacuum storage at 10℃ and 15℃ for up to 816 h or 408 h, respectively. The bacterial cell counts were enumerated on xylose lysine deoxycholate agar, and the modified Gompertz model was fitted to the Salmonella cell counts to calculate the kinetic parameters as a function of NaCl concentration on the growth rate (GR; Log CFU/g/h) and lag phase duration (LPD; h). A linear equation was then fitted to the parameters to evaluate the effect of NaCl concentration on the kinetic parameters. The GR values of Salmonella on sausages were higher (p<0.05) with 10 ppm NaNO2 concentration than with 0 ppm NaNO2. The GR values of Salmonella decreased (p<0.05) as NaCl concentration increased, especially at 10℃. This result indicates that 10 ppm NaNO2 may increase Salmonella growth at low NaCl concentrations, and that NaCl plays an important role in inhibiting Salmonella growth in sausages with low NaNO2.

A Study of Pseudomonas putida Fed-batch Culture (Pseudomonas putida의 유가배양연구)

  • 김인호;김희정;송재양
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.307-310
    • /
    • 2002
  • In order to obtain high density seed cells for biofiltration, we studied batch and fed-batch culture of P. putida. Studies were carried out to find optimum fermentation conditions such as pH, concentration of glucose and agitation speed. Specific growth rate of P. putida was dependent on agitation speed and a high rpm of 300 was necessary to carry out the efficient aerobic growth of P. putida. Specific growth rate was highest at pH 7. Feeding glucose and yeast extract continuously at the initial growth phase was the most effective way to get high cell density of P. putida.

Iso-catalase Profiles of Deinococcus spp.

  • Soung, Nak-Kuyn;Lee, Young-Nam
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.412-416
    • /
    • 2000
  • The obligate aerobic Deinococcus are highly resistant against lethal effect of UV-and ionizing-radiation. Only five mesophilic Deinococcus species, i. e. D. radiodurans, D. radiophilus, D. proteolyticus, D. radiopugnans, and D. grandis are known. Since an indispensable role of catalase has been suggested in protecting cells against oxidative stress and UV radiation, Deinococcal catalase activity of each species and electrophoretic profiles of catalases were investigated on gel. Total catalase activity was varied among the species in the aerobically grown culture at stationary phase. The occurrence of multiple forms of catalases with different molecular weights in four species of Deinococcus and of a single catalase in D. radiopugnans suggests that each species shows the unique catalase profiles on gel. Some Deinococcal catalases also exhibit peroxidase activity. Since Deinococcus spp. are less-distinct to each other in their morphology, biochemical and physiological properties, the catalase profiles on PAGE would be useful in identifying the species of Deinococcus.

  • PDF

Cancer Metabolism: Strategic Diversion from Targeting Cancer Drivers to Targeting Cancer Suppliers

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2015
  • Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the "universality" of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.

Characteristics of proteolytic microorganisms and their effects on proteolysis in total mixed ration silages of soybean curd residue

  • Hao, Wei;Tian, Pengjiao;Zheng, Mingli;Wang, Huili;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.100-110
    • /
    • 2020
  • Objective: The objective of this study was to isolate proteolytic microorganisms and evaluate their effects on proteolysis in total mixed ration (TMR) silages of soybean curd residue. Methods: TMRs were formulated with soybean curd residue, alfalfa or Leymus chinensis hay, corn meal, soybean meal, a vitamin-mineral supplement, and salt in a ratio of 25.0: 40.0:30.0:4.0:0.5:0.5, respectively, on a basis of dry matter. The microbial proteinases during ensiling were characterized, the dominate strains associated with proteolysis were identified, and their enzymatic characterization were evaluated in alfalfa (A-TMR) and Leymus chinensis (L-TMR) TMR silages containing soybean curd residue. Results: Both A-TMR and L-TMR silages were well preserved, with low pH and high lactic acid concentrations. The aerobic bacteria and yeast counts in both TMR silages decreased to about 105 cfu/g fresh matter (FM) and below the detection limit, respectively. The lactic acid bacteria count increased to 109 cfu/g FM. The total microbial proteinases activities reached their maximums during the early ensiling stage and then reduced in both TMR silages with fermentation prolonged. Metalloproteinase was the main proteinase when the total proteinases activities reached their maximums, and when ensiling terminated, metallo and serine proteinases played equally important parts in proteolysis in both TMR silages. Strains in the genera Curtobacterium and Paenibacillus were identified as the most dominant proteolytic bacteria in A-TMR and L-TMR, respectively, and both their proteinases were mainly with metalloproteinase characteristics. In the latter ensiling phase, Enterococcus faecium strains became the major sources of proteolytic enzymes in both TMR silages. Their proteinases were mainly of metallo and serine proteinases classes in this experiment. Conclusion: Proteolytic aerobic bacteria were substituted by proteolytic lactic acid bacteria during ensiling, and the microbial serine and metallo proteinases in these strains played leading roles in proteolysis in TMR silages.

Effect of Air Bubble Washing with Brine on Quality Characteristics of Strawberries during Storage (염수를 이용한 공기방울 세척이 딸기의 저장 시 품질특성에 미치는 영향)

  • Kang, Sung-Won;Lee, Byung-Ho;Heo, Ho-Jin;Chun, Ji-Yeon;Seoung, Tae-Jong;Choi, Sung-Gil
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.81-88
    • /
    • 2011
  • In this study, we investigated effect of washing with brine on quality characteristics of strawberries during storage at 4 or $20^{\circ}C$. The strawberry samples were prepared with brine-washing (BW), brine-washing and removing moisture on surface (BWR), or without brine-washing and removing moisture (control). The samples were tested for total aerobic bacteria, pH, color, firmness. BWR affected the microbial change, resulting in retarding the growth of total aerobic bacteria, compared with the control and BW. The initial microbial and exponential growth phase of BWR at $4^{\circ}C$ was not detected. For pH, there wasn't dramatical change on BWR at $4^{\circ}C$ and $20^{\circ}C$. In addition, there was dramatically in decreased on control and BW. A-value was increased over storage time on control and BWR except BW. For firmness, there wasn't dramatical change on all sample when stored at $4^{\circ}C$. The results suggest that storage of strawberry stored after washing and moisture removal from the surface should be applied to maintain quality and shelf-life during storage of strawberries.

Characteristics of Nutrients Removal Process Activating Soil Microorganisms and Phosphorus Uptake under Anoxic Condition(II) (토양미생물을 활성화한 영양염류 제거 공정의 특성과 무산소 조건에서의 인 섭취(II))

  • Shin, Eung-Bae;Ko, Nam-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1757-1763
    • /
    • 2000
  • To consider the nutrient removal characteristics of BNR process activating soil microorganisms under the influence of DPB and to clear the characteristics of DPB under anoxic condition was investigated in the this study. The batch tests were conducted using sludge sampled from the BNR process activating soil microorganisms during operation periods. The results of this study were summarized as follows: - The DPB(Denitrifying Phosphorus removing Bacteria) performing denitrification and phosphorus uptake in the anoxic phase plays an important role in removing nitrogen and phosphorus in the BNR process activating soil microorganisms. - The PUR(Phosphorus Uptake Rate) of DPB in the anoxic phase was to be about 50% of PUR in the aerobic phase. - The DPB in the BNR process turned out to be increasing nutrient removal efficiency of BNR process.

  • PDF

Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR) (Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거)

  • Shin, Jeong-Hoon;Sang, Byoung-In;Chung, Yun-Chul;Choung, Youn-Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.

Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics (2 상 유동 및 물질전달 특성에 미치는 오리피스 노즐형상과 소요동력의 영향)

  • Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.237-243
    • /
    • 2016
  • It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.