• Title/Summary/Keyword: Aerobic denitrification

Search Result 134, Processing Time 0.025 seconds

Nitrification and Denitrification of Land-based Fish Farm Wastewater using an Anaerobic-Aerobic Upflow Biological Aerated Filter (혐기-호기 상향류 필터 공정에서 양식배출수의 질산화 및 탈질 연구)

  • Park, Noh-Back;Lee, Hyun-Young;Kim, Seong-Min;Lee, Jun-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.622-629
    • /
    • 2014
  • This study induced biological denitrification and nitrification via a biofiltration process with the view of removing nitrogen from land-based fish farm effluent. To achieve this, we operated an aquaculture nitrogen-removal system that includes a denitrification and nitrification reactor [working volume 40 L, flow rate 64.8 L, HRT (hydraulic retention time) 14.8 h, HRT considering recycling of NOx 7.4 h]. In the continuous process, the nitrification rate of ammonium nitrogen exceeded 90% at a steady state and the denitrification efficiency exceeded 80% with recycling to a pre-anoxic reactor. In addition, the pH in the final effluent was lower with a low influent water alkalinity averaging 100 mg/L (as $CaCO_3$). For effective denitrification reactions, carbon must be supplied via particulate organic matter (POM) hydrolysis because of the low C/N (carbon/nitrogen) ratio in the water.

Nitrification and Denitrification by Using a Sequencing Batch Reactor System (Sequencing Batch Reactor (SBR)를 이용한 질산화와 탈질산화)

  • PARK Jong-Ho;LEE Won-Ho;CHO Kyu-Seok;HWANG Gyu-Deok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • Sequencing Batch Reactor (SBR) was operated under various experimental conditions to improve the efficiency of biological filters used for the treatment of recycled wastewater from aquaculture. This SBR system was operated for removing COD, ammonia and suspended solid that were the major pollutants in aquaculture wastewater. Aerobic and anoxic conditions after FILL mode were applied intermittently for effective removal of nitrogen. SETTLE and DRAW modes were followed by the complete aerobic and anoxic REACT mode. The total volume of the SBR was 75 liter, while the working volume in a cycle was 35 liters. When the final operating strategy of the SBR was FILL/REACT/SETTLE/DRAW of 0.5/10/1/0.5 hr. the removal efficiencies of TCODcr, $NH_{4}^{+}-N,$ and T-N were 94, 98, and $89\%,$ respectively.

The BNR-MBR(Biological Nutrient Removal-Membrane Bioreactor) for nutrient removal from high-rise building in hot climate region

  • Ratanatamskul, C.;Glingeysorn, N.;Yamamoto, K.
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • The overall performance of BNR-MBR, so-called Anoxic-Anaerobic-Aerobic Membrane Bioreactor ($A^3$-MBR), developed for nutrient removal was studied to determine the efficiencies and mechanisms under different solid retention time (SRT). The reactor was fed by synthetic high-rise building wastewater with a COD:N:P ratio of 100:10:2.5. The results showed that TKN, TN and phosphorus removal by the system was higher than 95%, 93% and 80%, respectively. Nitrogen removal in the system was related to the simultaneous nitrification-denitrification (SND) reaction which removed all nitrogen forms in aerobic condition. SND reaction in the system occurred because of the large floc size formation. Phosphorus removal in the system related to the high phosphorus content in bacterial cells and the little effects of nitrate nitrogen on phosphorus release in the anaerobic condition. Therefore, high quality of treated effluent could be achieved with the $A^3$-MBR system for various water reuse purposes.

Greenhouse gases emission from aerobic methanotrophic denitrification (AeOM-D) in sequencing batch reactor

  • Lee, Kwanhyoung;Choi, Oh Kyung;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.171-184
    • /
    • 2017
  • This study presents the effect of hydraulic retention time (HRT) on the characteristics of emission of three major greenhouse gases (GHGs) including $CH_4$, $CO_2$ and $N_2O$ during operation of a sequencing batch reactor for aerobic oxidation of methane with denitrification (AeOM-D SBR). Dissolved $N_2O$ concentration increased, leveled-off and slightly decreased as the HRT increased from 0.25 to 1d. Concentration of the dissolved $N_2O$ was higher at the shorter HRT, which was highly associated with the lowered C/N ratio. A longer HRT resulted in a higher C/N ratio with a sufficient carbon source produced by methanotrophs via methane oxidation, which provided a favorable condition for reducing $N_2O$ formation. With a less formation of the dissolved $N_2O$, $N_2O$ emission rate was lower at a longer HRT condition due to the lower C/N ratio. Opposite to the $N_2O$ emission, emission rates of $CH_4$ and $CO_2$ were higher at a longer HRT. Longer HRT resulted in the greater total GHGs emission as $CO_2$ equivalent which was doubled when the HRT increased from 0.5d to 1.0 d. Contribution of $CH_4$ onto the total GHGs emission was most dominant accounting for 98 - 99% compared to that of $N_2O$ (< 2%).

Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor (연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거)

  • Kim, Sung Hong;Lee, Yoon Heui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.669-675
    • /
    • 2006
  • Intermittent aerobic digestion experiments using a sequencing batch reactor (SBR) were carried out in this study. Aeration ratio was found to be an important operation factor for the reduction of solids and nitrogen. As the sludge digested, organic nitrogen was released from the solids and oxidized to nitrate nitrogen. Biological denitrification was also significant and the denitrification rate was limited by aeration ratio. Under the condition of 0.25-0.75 of aeration ratio, acclimation of ammonia nitrogen was not observed and pH were preserved near neutral in the intermittent aerobic digestion. As the aeration ratio increased, solids reduction was increased whereas dissolved nitrogen removal was decreased. Based on the experiments, 17-2% of VSS reduction and over 80% of dissolved nitrogen removal were practicable by intermittent aerobic digestion using a SBR when the MSRT were designed 8-32 days and aeration ratio was operated about 0.25-0.75.

Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13 (Alcaligenes faecalis NS13에 의한 호기성 종속영양 질산화 및 탈질화)

  • Jung, Taeck-Kyung;Ra, Chang-Six;Joh, Ki-Seong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2016
  • In order to find an efficient bacterial strain that can carry out nitrification and denitrification simultaneously, we isolated many heterotrophic nitrifying bacteria from wastewater treatment plant. One of isolates NS13 showed high removal rate of ammonium and was identified as Alcaligenes faecalis by analysis of its 16S rDNA sequence, carbon source utilization and fatty acids composition. This bacterium could remove over 99% of ammonium in a heterotrophic medium containing 140 mg/L of ammonium at pH 6-9, $25-37^{\circ}C$ and 0-4% of salt concentrations within 2 days. It showed even higher ammonium removal at higher initial ammonium concentration in the medium. A. faecalis NS13 could also reduce nitrate and nitrous oxide by nitrate reductase and nitrous oxide reductase, respectively, which was confirmed by detection of nitrate reductase gene, napA, and nitrous oxide reducase gene, nosZ, by PCR. One of metabolic intermediate of denitrification, $N_2O$ was detected from headspace of bacterial culture. Based on analysis of all nitrogen compounds in the bacterial culture, 42.8% of initial nitrogen seemed to be lost as nitrogen gas, and 46.4% of nitrogen was assimilated into bacterial biomass which can be removed as sludge in treatment processes. This bacterium was speculated to perform heterotrophic nitrification and aerobic denitrification simultaneously, and may be utilized for N removal in wastewater treatment processes.

The Role of Primary Clarifier in Biological Processes for Nutrient Removal (생물학적 질소·인제거 공정에서 일차 침전지의 영향)

  • Whang, Gye-Dae;Kim, Tae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • The lab-scale BNR processes fed with Municipal Wastewater Before or After Primary Clarifier (MWBPC or MWAPC) were operated to observe the behavior of particle organic matter in terms of nitrification and denitrification efficiency. As a result of the fractionation of the COD from MWBPC or MWAPC using an aerobic respirometric serum bottle reactor, the total mass of biodegradable organic matter from MWBPC is about 52% greater than the mass from MWAPC. Batch reactors were operated to observe the effect of the Particulate Organic Matter (POM) on substrate utilization for denitrification. Although the consumption of POM for denitrification was observed, the increment of the Specific Denitrification Rate (SDNR) was not great. In terms of the effect of POM on nitrification at different HRTs, activate sludge reactors were operated to determine the optimal HRT when MWBPC and MWAPC were fed relatively. All reactors showed a great organic matter removal efficiency. Reactors fed with MWAPC had obtained the nitrification efficiency above 90% when the HRT of 4 hr, at least, was maintained, while reactors fed with MWBPC had same efficiency when the HRT longer than 5 hr was kept. Three parallel $A^2/O$ systems fed with MWBPC or MWAPC relatively were operated to investigate the effects of POM on BNR processes with varying the HRT of an anoxic reactor. For all systems, the efficiency of organic matter removal and denitrification, respectively, was great and about the same. In case of denitrification efficiency, system with MWAPC had 1.5% lower than system with MWBPC at the same HRT of anoxic reactor of 2 hr, and the increasing the HRT of the anoxic reactor by 1 hr in systems fed with MWBPC resulted in a 3.5% increment. The denitrification rate was similar while the consumption of organic matter in systems fed with MWBPC was higher than system fed with MWBPC. It suggests that POM in MWBPC was not be used significantly as a substrate for denitrification in system with the HRT of 3 hr of an anoxic reactor.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.251-257
    • /
    • 2020
  • This study was performed to verify the possibility of nitrification and denitrification in a single reactor. In batch type experiment, optimal point of experimental conditions could be found by performing the experiments. When supply location of microbubbles was located at half of width of the aeration tank and operating pressure of 0.5 bar, it was possible for zones in the aeration tank to be separated into anoxic and aerobic by controlling air suction rate according to operating pressure of the generator. To be specific, the concentration of dissolved oxygen (DO) in zone 1 and 2 of the aeration tank could be maintained as less than 0.5 mg/L. Also, in the case of concentration of oxygen in zone 3 and 4, the concentration of DO was increased up to 1.7 mg/L due to effects of microbubbles. In continuous flow type experiment based on the results of batch type experiments, the removal efficiency of nitrogen based on T-N was observed as 39.83% at operating pressure of 0.5 bar and 46.51% at operating pressure of 1 bar so it was able to know that sufficient air suction rate should be required for nitrification. Also, denitrification process could be achieved in a single reactor by using ejector type microbubble generator and organic matter and suspended solid could be removed. Therefore, it was possible to verify that zones could be separated into anoxic and aerobic and nitrification and denitrification process could be performed in a single reactor.