• Title/Summary/Keyword: Aerobic biological treatment

Search Result 151, Processing Time 0.024 seconds

Characteristics of Denitrification from Municipal Wastewater Treatment using a Combined Fixed Film Reactor (CFFR) Process (복합생물막 반응기를 이용한 하수처리시 탈질화 특성)

  • 이종현;남해욱;김영규;박태주
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • A new biological nutrient removal system combining $A^2/O$ process with fixed film was developed in this work and the characteristics of denitrification were especially investigated in the combined fixed film reactor(CFFR). Media was added in the anaerobic, anoxic and aerobic reactors, respectively. Tests were made to establish the effluent level of $NO_x-N$, COD, DO and nitrite effects on $NO_x-N$ removal in the CFFR by decreasing hydraulic retention time (HRT) from 10.0 to 3.5 hours and by increasing internal recycle ratio form 0% to 200%. The influent was synthesized to levels similar to the average influent of municipal wastewater treatment plants in Korea. SARAN media with a porosity of 96.3% was packed 40% / 130% / 25% based on its reactor volume, respectively. It was found that COD rarely limited dentrification in the anoxic reactor because of high $C/NO_x/-N$ ratio in the anoxic reactor, while DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent inhibited denitrification in the anoxic reactor. It was proved that the critical points of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent were 0.15mg/L and 10%, respectively. As the internal recycle ratio increased, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent increased. Especially, at the condition of internal recycle ratio, 200%, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent exceeded the critical points of 0.15mg/L and 10%, respectively. Then, denitrification efficiency considerably decreased. Consequently, it was represented that the control of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent can assure effective denitrification.

  • PDF

Responses of Eukaryotic Cells to Oxidative Stress

  • Dawes, Ian W.
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.211-217
    • /
    • 2000
  • Oxidative stress is implicated in a number of diseases, in ageing of organisms, and in damage to plants that have been exposed to freezing and thawing or water stress. From the perspective of yeast as a model eukaryotic system, this article reviews the systems that are involved in the cellular responses to exposure to reactive oxygen species (ROS) generated during aerobic growth of the organism. The discussion includes the defense systems involved, the ability of cells to adapt to ROS treatment, cell-division cycle delay and the systems regulating gene expression that are activated by oxidative stress.

  • PDF

Development of Optimal Treatment Process Train of Leachate from Industrial Waste Disposal Site

  • Han Gee Baek;Choi Kwang Soo;Min Man Gi;Han Young Hwan;Im Jung Hoon;Lee Hae Goon;Choi Myung Won;Kim Chang Won;Park Dong Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.115-121
    • /
    • 1998
  • Train of chemical and biological processes was investigated to treat leachate from industrial waste landfill. Organics and nitrogen concentrations of landfill leachate studied in this research were high and their BOD/COD ratio was 0.3. Biological process should be combined with chemical process for optimum treatment of leachate. PAC(Polyaluminium chloride) was the best coagulant among three chemicals tested, and the optimum condition of PAC coagulation was pH 6 and 1,250 mg/L of dosage. When SBR was operated for simultaneous removal of organics and nitrogen, removal efficiency of COD and T-N reached over $82\%,\;71\%,$ respectively and time distribution of 2/4/2/1 was most effective for one cycle of anoxic/aerobic/anoxic/aerobic.

  • PDF

Sewage Treatment Using a Modified DNR Process (수정 DNR 공정을 이용한 하수처리)

  • Choi, Jin-Taek;Nam, Se-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • In this study, the removal characteristics of organic components and nutrients of sewage taken from the Suwon area were investigated in a lab-scale modified DNR (Daewoo Nutrient Removal) process. The modified DNR process consisted of a sludge denitrification tank, an anaerobic tank, an anoxic tank, an aerobic tank, a secondary anoxic tank and a secondary aerobic tank. The proposed process with the average C/N ratio of 3.5 was performed for the sewage treatment. The results were compared with other existing DNR processes. The organic fractions in sewage were analyzed by measuring the oxygen uptake rate. The resulting removal efficiencies of SS, BOD, COD, TN and TP were 93.1%, 95.5%, 86.1%, 67.8% and 80.6%, respectively.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

Fuzzy Control and Optimization for the Wastewater Treatment Process (퍼지제어기를 이용한 하폐수처리공정의 최적화)

  • 천성표;김봉철;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.452-455
    • /
    • 2000
  • There are increasingly important financial incentives and environmental consideration to improve the effluent quality of wastewater from domestic and industrial users. The activated sludge process is a widely used biological wastewater treatment process. The activated sludge process is complicated due to the many factors such as the variation of influent flowrate and concentration, the complexity of biological reactions and the various operation conditions. Nowadays, not only suspended solids and residual carbon, but also nitrogen and phosphorous concentration of the effluent water must be taken into account for the design and operation of wastewater treatment plants. Also, the effluent quality to be met are more stringent. Therefore, an intelligent control approach is required in order to successful biological nitrogen removal. In this paper, the strategies for dosage of extra carbon in the anoxic zone and DO concentration in the aerobic zone are presented and evaluated through the simulation using the denitrification layout of the IWA simulation benchmark implemented by Matlab$\^$/5.3/Simulink$\^$/3.0. The control strategy to achieve sufficient denitrification rates in an anoxic zone. Methanol is used as an external extra carbon source. The external extra carbon source is required for the nitrogen removal process because nitrogen and organic concentration are fluctuated in the influent flowrate. The dissolved oxygen is calculated by So concentration in the activated sludge model NO.1. The air flowrate of each aerobic reactor is intelligently controlled to achieve the predefined setpoints. Air flowrate is adjusted by the fuzzy logic controller that includes two inputs and one output. The objective function for the optimization procedure is designed to improve effluent quality and reduce the operating cost.

  • PDF

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

A Study on the Biological Treatment of RO Concentrate Using Aerobic Granular Sludge (호기성 그래뉼 슬러지를 이용한 RO 농축수의 생물학적 처리에 관한 연구)

  • Kim, Hyun Gu;Ahn, Dae Hee;Cho, Eun Ha;Kim, Han Yong;Ye, Hyoung Young;Mun, Jung Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • The purpose of this study is to efficiently improve biological sequencing batch reactor (SBR) system of high-concentrated nitrate nitrogen in reverse osmosis (RO) concentrates by total dissolved solids (TDS) regulation. Since a laboratory-scale SBR system had been operated, we had analyzed specific denitrification rate (SDNR) and specific oxygen uptake rate (SOUR) for microbial activity in according to various injection concentration of TDS. As a result, higher injection concentration of TDS decreased SDNR, and delayed denitrification within denitrification process. Moreover, the higher injection concentration of TDS was, the lower microbial activity was during operation of laboratory-scale SBR system. Therefore, the regulation of TDS injection concentration is necessary to improve efficiency of nitrate nitrogen in the biological SBR system, and treatment of calcium ion ($Ca^{2+}$) is also specifically focused to remove nitrate nitrogen. Moreover, analytical data of SDNR and SOUR can be the effective kinetic design parameters to application of biological treatment of RO concentrate by aerobic granular sludge (AGS).

Substrate Removal Characteristics for Low Temperature by Biological Activated Carbon (저온에서 생물활성탄의 기질제거특성)

  • Ryu, Seong Ho;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.76-93
    • /
    • 1997
  • Activated carbon is widely used for the treatment of water, wastewater and other liquid wastes. Biological activated carbon (BAC) process is water and wastewater treatment process developed in the 1970's. In addition to activated carbon adsorption, biodegradation organic pollutants occurs in the BAC bed where a large amount of aerobic biomass grows. This results in a long operation time of the carbon before having to be regenerated and thus a low treatment cost. Although the BAC process has been widely used, its mechanisms have not been well understood, especially the relationship between biodegradation and carbon adsorption, whether these two reactions can promote each other or whether they just simultaneously exist in the BAC bed. Also, the phenomenon of bioregeneration has been confused that previously occupied adsorption sites appear to be made available through the actions of microorganisms. And that, because biological process is influenced by low temperature, the mechanism of the BAC process is also effected by temperature variation in our country of winter temperature near the freezing point. Therefore, the objective of this study examines closely the mechanism of the BAC process by temperature variation using phenol as substrate. From this study, biological activated carbon is good substrate removal better than non adsorbing materials (charcoal, sand) as temperature variation, especially low temperature(near $5^{\circ}C$).

  • PDF