• Title/Summary/Keyword: Aerobic batch reactor

Search Result 96, Processing Time 0.023 seconds

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

Change in Influent Concentration of Domestic Wastewater from Separated Sewer and Biological Nitrogen and Phosphorus Removal of a Full Scale Air-vent SBR (분류식 하수관거로의 전환시 유입하수의 성상 변화 및 선회와류식 SBR공법의 처리 특성)

  • Lee, Jang-Hee;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • This study was carried out to investigate change in influent concentration of domestic wastewater flowed from a newly constructed separate sewer system (SSS) and biological nutrients removal efficiency of a full scale Air-vent sequential batch reactor (SBR, $600m^3/d$). The average concentration of $BOD_5$, SS, T-N and T-P from SSS were 246.5 mg/L, 231.6 mg/L, 42.974 mg/L, 5.360 mg/L, respectively which corresponds to 2.2times, 1.2times, 1.8times and 2.1times higher than those from the conventional combined sewer system (CSS). The removal efficiency of $BOD_5$, SS, T-N, and T-P for the Air-vent SBR operated with influent from SSS averaged 99.1%, 99.0%, 91.2%, and 93.5%, respectively. Especially the respective nitrogen and phosphorus removal was 15% greater than that of the SBR operated with influent from CSS. Simultaneous nitrification and denitrification (SND) was observed in an aerobic reactor(II) as a result of DO concentration gradient developed along the depth by the Air-vent system. In order to achieve T-N removal greater than 90%, the C/N ratio should be over 6.0 and the difference between $BOD_5$ loading and nitrogen loading rate be over 100 kg/day (0.130 kg $T-N/m^3{\cdot}d$). Even with high influent T-P concentration of 5.360 mg/L from SSS (compared with 2.465 mg/L from CSS) T-P removal achieved 93.5% which was 15.5% higher than that of the SBR with influent from CSS. This is probably due to high influent $BOD_5$ concentration from SSS that could provide soluble carbon source to release phosphorus at anaerobic condition. In order to achieve T-P removal greater than 90%, the difference between $BOD_5$ loading and phosphorus loading rate should be over 100 kg /day (0.130 kg $T-N/m^3{\cdot}d$).

Interpretation of Simultaneous Nitrification & Denitrification Reaction by Modifying Activated Sludge Models(ASMs) (활성슬러지 모델 수정을 통한 동시 질산화.탈질 반응 해석)

  • Kim, Hyo-Su;Kim, Ye-Jin;Lee, Sung-Hak;Moon, Tae-Sup;Choi, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • Simultaneous nitrification and denitrification means that nitrification and denitrification occur concurrently in the same reaction vessel under low DO concentration. Some mathematical models developed to simulate simultaneous nitrification and denitrification reaction, but they have the complex model structures or have limitations of model application. To solve these problems, if possible that predict the behavior of simultaneous nitrification and denitrification reaction by activated sludge model, structures of the model is less complex than previous models and applies the various operation conditions. But original activated sludge models have difficulties in representing the denitrification reaction under aerobic condition. So the aim of this study is to interpret simultaneous nitrification and denitrification reaction by modifying activated sludge model. Original activated sludge model No.1(ASM1) was selected and modified. The simulation result in modified ASM1 predicted appropriately for the measured data. This indicates the structures of ASM1 are properly improved for interpretation of simultaneous nitrification and denitrification reaction.

The Development of Treatment System for Removing the Low Concentrated Nitrogen and Phosphorus Using Phototrophic Bacteria and Media (광합성 박테리아 및 담체를 이용한 하천의 저농도 질소, 인 처리 시스템 개발)

  • Kim, Sun-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • We used phototrophic bacteria to remove low concentrated organic materials (CODCr), nitrogen and phosphorus. We applied $COD_{Cr}$ 37.3 mg/L, $NH_3-N$ 4.0 mg/L, and $PO_4^{3-}-P$ 1.0 mg/L (C:N:P=100:10:1) in the batch test, and the removal efficiencies were shown as follow: $COD_{Cr}$ 87.4%, $NH_3-N$ 46.3%, $PO_4^{3-}-P$ 79.7%. The aerobic process with mixed phototrophic bacteria, ceramic media, and media KSP01 showed the removal efficiencies of $COD_{Cr}$, $NH_3-N$, and $PO_4^{3-}-P$, each as 72.7% and 79.2%, respectively in the lab-scale reactor. The maximum $PO_4^{3-}-P$ removal efficiency reached 92.6% by adjusting pH. There were three conditions used to remove $NH_3-N$. The highest removal efficiency was 98.5% with 10.2 L/min of aeration in 1-2 reactors, and the result of applying river-water showed the high removal efficiency of $NH_3-N$ (82.8%). Therefore, this purification system may be useful to control nitrogen and phosphorus at low concentration in field.

A Study on Application of SBR Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR 공정 적용에 관한 연구)

  • Kim, Il-Whee;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • In this study, Application of sequencing batch reactor (SBR) process for RO retentate treatment was performed. Efficiency of treatment by load and temperature variation was tested. The SBR process was operated two types as HRT per one cycle was 8 and 12 hours, respectively. Methanol was injected for an effective denitrificaion owing to low C/N ratio of the RO retentate. TN removal efficiency of the SBR process was relatively stable at the change of flow-rate and temperature. The optimum time cycle of SBR process was 2 cycle/day for TN removal, and in the case of 3 cycle/day, the effluent TN concentration was found under the effluent quality standard. In the result of assessment, the application of SBR process for RO retentate treatment was effective and could be utilized to design for the wastewater treatment plant. The specific nitrification rate (SNR) and specific denitrification rate (SDNR) were $0.043{\sim}0.066kg\;NH_3-N/kg\;MLVSS{\cdot}day$ and $0.096{\sim}0.287kg\;NH_3^--N/kg\;MLVSS{\cdot}day$, respectively. The derived kinetic could be applied for design to the aerobic and anoxic tank in the RO retentate treatment.

Nitrite Removal by Autotrophic Denitrification Using Sulfur Particles (황입자를 이용한 독립영양탈질에서의 아질산성질소 탈질 조건 탐색)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • Swine wastewater contains high amounts of organic matter and nutrients (nitrogen and phosphorus). The biological nitrogen removal can be achieved by nitrification and denitrification processes. Nitrification-denitrification can be performed via nitrite which is called as the short-cut process. This Short-cut process saves up to 25% of oxygen and 40% of external carbon during nitrification and denitrification. In this study, the batch tests were conducted to assess the different parameters for the nitrite sulfur utilizing denitrification, such as alkalinity, temperature, initial nitrite concentration, and dissolved oxygen. The experimental results showed that the nitrite removal efficiency of the reactor was found to be over 95% under the optimum condition ($30^{\circ}C$ and sufficient alkalinity). Autotrophic nitrate denitrification was inhibited at low alkalinity condition showing only 10% removal efficiency, while nitrite denitrification was achieved over 95%. The nitrite removal rates were found similar at both $20^{\circ}C$ and $30^{\circ}C$. In addition, nitrite removal efficiencies were inhibited by increasing oxygen concentration, but sulfate concentration increased due to sulfur oxidation under an aerobic condition. Sulfate production and alkalinity consumption were decreased with nitrite compared those with nitrate.