• Title/Summary/Keyword: Aero-parts

Search Result 33, Processing Time 0.021 seconds

Comparison of Commercial and Military Electromagnetic Compatibility Test Requirements (항공전자장비에 대한 전자기 적합성 평가기술 분석)

  • Han, Sang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.222-229
    • /
    • 2007
  • Environmental tests should be carried out to show that design performance is in an operational condition in an actual operational environment to assure maintainability and reliability. Aero-products electromagnetic compatibility tests are performed mainly for the individual parts and Specifications MIL-STD-461E and RTCA DO-160E are developed for the military and commercial parts tests respectively. The MIL-STD-461E which is a military environmental test standard is targeting all munitions and that user can apply by selecting applicable requirements from this specification. On the other hand, requirements are applied exclusively for the Avionics Equipments in commercial test standard.

  • PDF

Evaluation of the composite joint strength by the failure area index method (파괴면적지수법에 의한 복합재료 체결부의 강도평가)

  • 전영준;최진호;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.1-4
    • /
    • 2002
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the strength of the mechanically fastened composite joint which has the same stacking sequence was suggested and evaluated. By the suggested failure area index method, the strength of the mechanically fastened composite joint could be predicted within 6.03%.

  • PDF

A Study on the strength of mechanically fastened composite joint (기계적으로 체결된 복합재료 조인트의 강도에 관한 연구)

  • 최진호;전영준;권진희
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2002
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the strength of the mechanically fastened composite joint which has the same stacking sequence was suggested and evaluated. By the suggested failure area index method, the strength of the mechanically fastened composite joint could be predicted within 6.03%.

A study on the prediction of the joint strength using the failure area index method (파괴면적지수법을 이용한 조인트 강도 예측에 관한 연구)

  • 전영준;최진호;권진회;양승운;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.106-109
    • /
    • 2002
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the strength of the mechanically fastened composite joint which has the same stacking sequence was used and evaluated. By the used failure area index method, the strength of the mechanically fastened composite joint which has the specimen of different shape and stacking sequence could be predicted within 9.96%.

  • PDF

A Study on the Strength of Mechanically Fastened Composite Joint Using the Linear Analysis (선형해석을 이용한 복합재료 기계적 체결부의 강도평가에 관한 연구)

  • 전영준;최진호;권진회;변준형;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.79-82
    • /
    • 2003
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the failure load of the mechanically fastened composite joint was used and the prediction accuracies of the linear finite element analysis were compared with those of nonlinear finite element analysis.

  • PDF

Predicting Noise inside a Trimmed Cavity Due to Exterior Aero-Acoustic Excitation (외부 유동 소음원에 의한 흡차음재 공간내에서의 소음 예측)

  • Jeong, ChanHee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.569-569
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using CFD Code. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran.

  • PDF

Duplex Surface Modification with Micro-arc Discharge Oxidation and Magnetron Sputtering for Aluminum Alloys

  • Tong, Honghui;Jin, Fanya;He, Heng
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.21-27
    • /
    • 2003
  • Micro-arc discharge oxidation (MDO) is a cost-effective plasma electrolytic process which can be used to improve the wear and corrosion resistance of Al-alloy parts by forming a alumina coating on the component surface. However, the MDO coated Al-alloy components often exhibit relatively high friction coefficients and low wear resistance fitted with many counterface materials, additionally, the pitting corrosion for the MDO coated AI-alloy components, especially for a thinner alumina coating, often occurs in atmosphere circumstance due to the porous alumina coats. Therefore, a duplex treatment, combining a MDO coated ahumina thin layer with a TiN coating, prepared by magnetron sputtering (MS), has been investigated. The Vicker's microhardness, pin-on-disc, electrochemical measurement, salt spray, XRD and SEM tests were used to characterize and analyze the treated samples. The work demonstrates that the MDO/MS coated samples have a combination of a very low friction coefficient and good wear resistance as well as corrosion since the micro-holes on alumina coating are partly or fully covered by TiN material.

A study on the optimal control of Long Stroke Fast Tool Servo Systems (장거리 구동용 FTS 의 최적 제어에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.818-821
    • /
    • 2004
  • With a rapid development in the area of micro and ultra precision technology, the micro surface machining of small size parts are explosively increased. Especially, to improve efficiency of various beams in lens and reflector, non-rotational symmetric form and several mm level heights changeable surface can be machined at a time. These geometric complex 3D surface cannot be machined by general short stroke FTS. The long stroke FTS if firmly needed to move directly several mm and have nm level positioning accuracy for the complex surface form. The long stroke FTS used linear motors to drive moving unit long and fine, aero static bearings to decrease friction and moving errors in guide way, optical linear scale with nm level resolution to measure position of FTS. Furthermore, to increase the performance of acceleration of FTS, the light material, such as AL is used for the structure and the high stiffness box type structure is selected. In this paper, the genetic algorithm approach is described to determine a set of design parameters for auto tuning. The authors have attempted to model the design problem with the objective of minimizing the error, such as variable pattern change. This method can give the better alternative than existing other method.

  • PDF

Review on Advanced Health Monitoring Methods for Aero Gas Turbines using Model Based Methods and Artificial Intelligent Methods

  • Kong, Changduk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.123-137
    • /
    • 2014
  • The aviation gas turbine is composed of many expensive and highly precise parts and operated in high pressure and temperature gas. When breakdown or performance deterioration occurs due to the hostile environment and component degradation, it severely influences the aircraft operation. Recently to minimize this problem the third generation of predictive maintenance known as condition based maintenance has been developed. This method not only monitors the engine condition and diagnoses the engine faults but also gives proper maintenance advice. Therefore it can maximize the availability and minimize the maintenance cost. The advanced gas turbine health monitoring method is classified into model based diagnosis (such as observers, parity equations, parameter estimation and Gas Path Analysis (GPA)) and soft computing diagnosis (such as expert system, fuzzy logic, Neural Networks (NNs) and Genetic Algorithms (GA)). The overview shows an introduction, advantages, and disadvantages of each advanced engine health monitoring method. In addition, some practical gas turbine health monitoring application examples using the GPA methods and the artificial intelligent methods including fuzzy logic, NNs and GA developed by the author are presented.

A Study on the strength of the Bolted Joint & Pin Joint with Hole Clearance (원공공차를 가진 볼트 조인트와 핀 조인트의 강도평가에 관한 연구)

  • Jeong, Kang-Woo;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.186-190
    • /
    • 2012
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, composite joint have become a very important research area because they are often the weakest sites in composite structures. In this paper, the failure strengths of the bolted joint and pin joint which have variable hole clearance were evaluated and compared. From the tests, the first failure loads of the bolted joint and pin joint with $880{\mu}m$ hole clearance have decreased by 24.2 % and 51.3 % compared to those of joints with $0{\mu}m$ hole clearance, respectively. Also, the failure index of the joints were calculated by the finite element method and compared with experimental results.