• Title/Summary/Keyword: Aero Acoustic

Search Result 63, Processing Time 0.022 seconds

HST exterior noise : prediction and reduction scheme by using ray tracing technique (고속철도 차량의 외부소음 예측 및 저감 연구 : 광음향기법 응용)

  • Hong, Yun-H.;Kim, Sung-T.;Kim, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.209-214
    • /
    • 2009
  • In this research, an external noise distribution of a HST has been analyzed by using a ray tracing techniques. An aero-dynamic noise generated from a bogie has been considered as a major noise source. Then a distribution of the noise on the outside of the vehicle is calculated using a ray noise technique. The models simulated are two different acoustic fields: an open field and a tunnel. In order to evaluate the noise effects, an exterior structure has been modified by using a different length of skirts. Various application schemes of reducing an environmental noise level will be expected for a HST based on this research.

  • PDF

Performance predictions and acoustic analysis of the HVAB rotor in hover

  • Mali, Hajar;Benmansour, Kawtar;Elsayed, Omer;Qaissi, Khaoula
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.319-333
    • /
    • 2022
  • This work presents a numerical investigation of the aerodynamics and aero acoustics of the HVAB rotor in hover conditions. Two fully turbulent models are employed, the one-equation Spalart-Allmaras model and the two-equation k-ω SST model. Transition effects are investigated as well using the Langtry-Menter γ-Re θt transition transport model. The noise generation and propagation are being investigated using the Ffows-Williams Hawking model for far-field noise and the broadband model for near-field noise. Comparisons with other numerical solvers and with the PSP rotor test data are presented. The results are presented in terms of thrust and power coefficients, the figure of merit, surface pressure distribution, and Sound pressure level. Velocity, pressure, and vortex structures generated by the rotor are also shown in this work. In addition, this work investigates the contribution of different blade regions to the overall noise levels and emphasizes the importance of considering specific areas for future improvements.

Numerical Analysis of Sunroof Buffeting using STAR-CCM+ (STAR-CCM+를 이용한 썬루프 버페팅 유동 소음 해석)

  • Bonthu, Satish Kumar;Mendonca, Fred;Kim, Ghuiyeon;Back, Young-R.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.213-218
    • /
    • 2014
  • CFD flow simulation of vehicles with open sunroof and passenger window help the automotive OEM(original equipment manufacturer) to identify the low frequency noise levels in the cabin. The lock-in and lock-off phenomena observed in the experimental studies of sunroof buffeting is well predicted by CFD speed sweep calculations over the operating speed range of the vehicle. The trend of the shear layer oscillation frequency with vehicle speed is also well predicted. The peak SPL from the CFD calculation has a good compromise with the experimental value after incorporating the real world effects into the CFD model by means of artificial compressibility and damping correction. The entire process right from modeling to flow analysis as well as acoustic analysis has been performed within the single environment i.e., STAR-CCM+.

Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique (복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.391-398
    • /
    • 2012
  • In this paper, prediction of centrifugal fan was conducted through combination the hybrid CAA method which was used to predict the fan noise with the FRPM technique which was used to generate the broadband noise source. Firstly, flow field surround the centrifugal fan was computed using the RANS equations and noise source region was deducted from the computed flow field. Then the FRPM technique was applied to the source region for generation of turbulence which satisfies the stochastic features. The noise source of the centrifugal fan was modeled by applying the acoustic analogy to the synthesized flow field from the computed and generated flow fields. Finally, the broadband noise of the centrifugal fan was predicted through combination the modeled noise source with the linear propagation which was realized using the boundary element method. It was confirmed that the proposed technique is efficient to predict the tonal and broadband noises of centrifugal fan through comparison with the measured data.

Numerical Investigation on the Flow Noise Characteristics of the Hybrid Vertical-axis Wind Turbine (복합형 수직축 풍력발전기의 유동소음특성에 관한 수치적 고찰)

  • Kim, Sanghyeon;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.351-357
    • /
    • 2014
  • In this paper, flow noise characteristics of the hybrid vertical-axis wind turbine is investigated. Hybrid vertical-axis wind turbines consisting of two types of vertical-axis wind turbines, Savonius and Darrieus, are devised to maximize merits of one turbine and thus minimize demerits of the other turbine. In order to predict flow noise radiating from hybrid vertical-axis wind turbines, hybrid computatioinal aero acoustic techniques are used. First, unsteady flow fields around the turbine are predicted using computational fluid dynamics method. Then, the flow noise radiations from the turbines are predicted by applying acoustic analogy to the predicted flow fields. Based on numerical results, noise characteristics of a hybrid vertical-axis wind turbine is investigated and is compared with those of Savonius and Darrieus wind turbines.

Noise Prediction of Ducted Fan Unmanned Aerial Vehicles considering Strut Effect in Hover

  • Park, Minjun;Jang, Jisung;Lee, Duckjoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.144-153
    • /
    • 2017
  • In recent years, unmanned aerial vehicles (UAVs) have been developed and studied for various applications, including drone deliveries, broadcasting, scouting, crop dusting, and firefighting. To enable the wide use of UAVs, their exact aeroacoustic characteristics must be assessed. In this study, a noise prediction method for a ducted fan UAV with complicated geometry was developed. In general, calculation efficiency is increased by simulating a ducted fan UAV without the struts that fix the fuselage to the ducts. However, numerical predictions of noise and aerodynamics differ according to whether struts are present. In terms of aerodynamic performance, the total thrust with and without struts is similar owing to the tendency of the thrust of a blade to offset the drag of the struts. However, in aeroacoustic simulations, the strut effect should be considered in order to predict the UAV's noise because noise from the blades can be changed by the strut effect. Modelling of the strut effect revealed that the dominant tonal noises were closely correlated with the blade passage frequency of the experimental results. Based on the successful detection of noise sources from a ducted fan UAV system, using the proposed noise contribution contour, methods for noise reduction can be suggested by comparing numerical results with measured noise profiles.

Computation of Turbulent Flows and Radiated Sound From Axial Compressor Cascade

  • Lee, Seungbae;Kim, Hooi-Joong;Kim, Jin-Hwa;Song, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.272-285
    • /
    • 2004
  • The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from -40$^{\circ}$ to +20$^{\circ}$ and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8$^{\circ}$ caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.

INVESTIGATION FOR THE AERODYNAMIC CHARACTERISTICS OF HIGH SPEED TRAIN PANTOGRAPH WITH COVER (커버 형상을 고려한 고속전철 팬터그래프 공력특성의 수치해석적 연구)

  • Kang, H.M.;Kim, C.W.;Cho, T.H.;Kim, D.H.;Yoon, S.H.;Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.18-24
    • /
    • 2012
  • The aerodynamic performance of the pantograph on a high speed train was compared for different pantograph covers which are designed to block the aero-acoustic noise from the pantograph. For the study, two types of cover are designed: wedge and cone types. The lift force of pantograph with cover was compared with the force of pantograph only. The comparison clarified that the cone type cover increases the sideslip angle of the flow and decreases the lift force considerably. However, the wedge type cover changes the flow direction upward and increases the lift force of the pan head. This increment of lift force compensates the decrement of lift force caused by the blocking of the flow into the pantograph lower frame due to cover. Therefore, in case of the wedge type cover, the overall lift force changes slightly compared with the cone type cover.

Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy (생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구)

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

Combustion Instability Analysis Using Network Model in an Annular Gas Turbine Combustor (네트워크 모델을 이용한 환형 가스터빈 연소기에서의 연소불안정 해석)

  • Pyo, Yeongmin;Yoon, Myunggon;Kim, Daesik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.896-904
    • /
    • 2017
  • Lean premixed combustion was successful in meeting current NOx emission regulations. However, these often leads to combustion instability. This phenomena results from the feedback relationship between heat release perturbations and acoustic pressure oscillations in the combustor. Researches on the combustion instability in an annular combustor have recently received great attention due to the enhanced NOx requirement in aero-engines. In this study, the thermoacoustic network model has been developed in order to calculate the acoustics for longitudinal as well as circumferential modes in the annular combustor. The combustion model in the network model is calculated by flame transfer function(FTF). Numerical and analytical results are compared to an measurement data.

  • PDF