• 제목/요약/키워드: Aerial image

검색결과 793건 처리시간 0.017초

딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성 (True Orthoimage Generation from LiDAR Intensity Using Deep Learning)

  • 신영하;형성웅;이동천
    • 한국측량학회지
    • /
    • 제38권4호
    • /
    • pp.363-373
    • /
    • 2020
  • 정사영상 생성을 위한 많은 연구들이 진행되어 왔다. 기존의 방법은 정사영상을 제작할 경우, 폐색지역을 탐지하고 복원하기 위해 항공영상의 외부표정요소와 정밀 3D 객체 모델링 데이터가 필요하며, 일련의 복잡한 과정을 자동화하는 것은 어렵다. 본 논문에서는 기존의 방법에서 탈피하여 딥러닝(DL)을 이용하여 엄밀정사영상을 제작하는 새로운 방법을 제안하였다. 딥러닝은 여러 분야에서 더욱 급속하게 활용되고 있으며, 최근 생성적 적대 신경망(GAN)은 영상처리 및 컴퓨터비전 분야에서 많은 관심의 대상이다. GAN을 구성하는 생성망은 실제 영상과 유사한 결과가 생성되도록 학습을 수행하고, 판별망은 생성망의 결과가 실제 영상으로 판단될 때까지 반복적으로 수행한다. 본 논문에서 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 라이다 반사강도 데이터와 적외선 정사영상을 GAN기반의 Pix2Pix 모델 학습에 사용하여 엄밀정사영상을 생성하는 두 가지 방법을 제안하였다. 첫 번째 방법은 라이다 반사강도영상을 입력하고 고해상도의 정사영상을 목적영상으로 사용하여 학습하는 방식이고, 두 번째 방법에서도 입력영상은 첫 번째 방법과 같이 라이다 반사강도영상이지만 목적영상은 라이다 점군집 데이터에 칼라를 지정한 저해상도의 영상을 이용하여 재귀적으로 학습하여 점진적으로 화질을 개선하는 방법이다. 두 가지 방법으로 생성된 정사영상을 FID(Fréchet Inception Distance)를 이용하여 정량적 수치로 비교하면 큰 차이는 없었지만, 입력영상과 목적영상의 품질이 유사할수록, 학습 수행 시 epoch를 증가시키면 우수한 결과를 얻을 수 있었다. 본 논문은 딥러닝으로 엄밀정사영상 생성 가능성을 확인하기 위한 초기단계의 실험적 연구로서 향후 보완 및 개선할 사항을 파악할 수 있었다.

농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석 (Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images)

  • 최현경;김태정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1445-1462
    • /
    • 2022
  • 2025년도 발사예정인 농림위성은 광역농림상황관측용도로 개발된 5 m급 해상도를 갖는 중해상도 위성이다. 위성영상 활용을 위해서는 위성영상에 대한 정밀센서모델을 수립하여 정확한 기하정보를 수립하는 것이 중요하다. 선행 연구에서 지상기준점 칩과 위성영상을 정합하는 과정을 통해 자동으로 정밀센서모델을 수립할 수 있음을 보고하였다. 따라서 위성영상의 기하정확도를 향상시키기 위해서는 지상기준점 칩 정합 성능을 향상시켜야 한다. 이 논문은 중해상도 위성영상의 센서모델 정확도 향상을 위한 지상기준점 칩 정합 개선방안을 제안한다. 고해상도 지상기준점 칩을 중해상도 위성영상 정밀센서모델링을 위해 사용할 경우의 중요한 기술요소는 상이한 공간해상도 처리방식과 최적 지상기준점 수량결정이다. 본 연구에서는 이러한 기술요소를 해결하기 위해 중해상도 위성영상과 지상기준점 칩 정합 시, 위성영상 업샘플링(upsampling) 배율과 사용한 칩 개수에 따른 칩 정합 성능을 비교 분석하였다. 실험에는 해상도가 5 m인 RapidEye 영상을 중해상도 위성영상으로 사용하였으며, 해상도가 0.25 m인 항공정사영상과 0.5 m인 위성정사영상을 지상기준점 칩으로 제작하여 사용하였다. 정확도 분석은 수동으로 추출한 기준점을 사용하여 수행되었다. 실험결과, 업샘플링 배율 2 내지 3에서 정확도가 크게 향상되었으며 지상기준점 수량은 대략 100개인 경우 정확도가 유지되었다. 이러한 결과로부터 중해상도 위성의 정밀센서모델 수립에 고해상도 지상기준점 칩 적용 가능성을 확인할 수 있었고, 기존보다 향상된 정확도의 정밀센서모델이 수립됨을 확인하였다. 본 연구결과가 향후 농림위성에 활용될 수 있을 것으로 기대한다.

무인기 기반 RGB 영상 활용 U-Net을 이용한 수수 재배지 분할 (Sorghum Field Segmentation with U-Net from UAV RGB)

  • 박기수;유찬석;강예성;김은리;정종찬;박진기
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.521-535
    • /
    • 2023
  • 논·밭 전환 시 수수(sorghum bicolor L. Moench)는 뛰어난 내습성으로 콩과 함께 안정적인 생산이 가능하여 국내 식량작물의 자급률 향상과 쌀 수급 불균형 문제를 해결할 수 있을 것으로 기대되는 작물이다. 그러나 수량 추정을 위한 재배면적과 같은 기본적인 통계조사는 많은 인력을 투입하여도 오래 걸리는 전통적인 조사 방식으로 인해 잘 이루어 지지 않고 있다. 이에 따라 본 연구에서는 무인기 기반 RGB 영상에 U-Net을 적용하여 수수 재배지 비파괴적 분할가능성을 확인하였다. 2022년에 7월 28일, 8월 13일, 8월 25일에 각각 영상이 취득되었다. 각 영상취득 날짜에서 512 × 512 영상크기로 훈련데이터셋 6,000장과 검증데이터셋 1,000장으로 나누어 학습을 진행하였으며 수수 농경지(sorghum), 벼와 콩 농경지(others)와 비 농경지(background)로 구성된 세 개 클래스와 수수 농경지와 배경(others+background)으로 구성된 두 개 클래스 기반으로 분류모델을 개발하였다. 모든 취득 날짜에서 세 개 클래스 기반 모델에서는 수수 재배지 분류 정확도가 0.91 이상으로 나타났지만 8월 데이터셋의 others 클래스에서 학습 혼동이 일어났다. 대조적으로 두 개 클래스 기반 모델에서는 8월 데이터셋의 안정적인 학습과 함께 모든 클래스에서 0.95 이상의 정확도를 나타내었다. 결과적으로 8월에 두개클래스 기반 모델을 현장에 재현하는 것이 수수 재배지 분류를 통한 재배면적 산출에 유리할 것으로 판단된다.