• Title/Summary/Keyword: Aerial image

Search Result 789, Processing Time 0.029 seconds

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kwak, Han-Bin;Kwak, Doo-Ahn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.3-12
    • /
    • 2010
  • In previous studies, the digital measurement systems and analysis algorithms were developed by using the related techniques, such as the aerial photograph detection and high resolution satellite image process. However, these studies were limited in 2-dimensional geo-processing. Therefore, it is necessary to apply the 3-dimensional spatial information and coordinate system for higher accuracy in recognizing and locating of geo-features. The objective of this study was to develop a stochastic algorithm for the optimal sensor placement using the 3-dimensional spatial analysis method. The 3-dimensional information of the LiDAR was applied in the sensor field algorithm based on 2- and/or 3-dimensional gridded points. This study was conducted with three case studies using the optimal sensor placement algorithms; the first case was based on 2-dimensional space without obstacles(2D-non obstacles), the second case was based on 2-dimensional space with obstacles(2D-obstacles), and lastly, the third case was based on 3-dimensional space with obstacles(3D-obstacles). Finally, this study suggested the methodology for the optimal sensor placement - especially, for ground-settled sensors - using the LiDAR data, and it showed the possibility of algorithm application in the information collection using sensors.

An Analysis of Vertical Position Accuracy for the Three-Dimensional Spatial Data Object Utilizing the Public Information (공공데이터를 활용한 3차원 공간정보 객체의 수직위치 정확도 분석)

  • Kim, Jeong Taek;Yi, Su Hyun;Kim, Jong Il;Bae, Sang Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Recently, as new paradigm for government operation called government 3.0, government is actively operating policy opening and sharing public data. In addition, the Ministry of Land are operating an open platform integrated map service (the VWorld) which provides a variety of video contents such as the country's national spatial information, traffic information and three-dimensional building for the public. According to W3C Foundation's Open Data Status Report(2013), our country has the evaluated results that the part of the government's policy support and planning is good while the part of the data management is vulnerable. So our country needs the quality improvement for the data management. In addition, a digital aerial photograph image data is required to be up-to-date for the three-dimensional spatial object data. In this paper, we present the method for enhancement of the accuracy of vertical position and for maintainment of up-to-date vertical position. Our methods evaluate the data quality and analyze the cause of error of measurement utilizing the national standard quality assessment method. The result of research shows that the accuracy of vertical position is improved if the height of the building captain is adjusted by the quality assessment values and a three-dimensional model has up-to-date data if reconstruction and extension information of construction register is utilized.

Research on the Variation of Deposition & Accumulation on the Shorelines using Ortho Areial Photos (수치항공사진을 이용한 해안선 침퇴적변화에 관한 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Oh, Che-Young;Son, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.23-31
    • /
    • 2009
  • The border of the shorelines in a nation is an important factor in determining the border of a national territory, but Korea's shorelines are rapidly changing due to the recent rise in sea level from global warming and growth-centered economic policy over the decades of years. This research was done centering on the areas having well-preserved shorelines as they naturally are and other areas having damaged shorelines in their vicinities due to artificial structures at the two beaches located at the neighboring areas and having mutually homogeneous ocean conditions with each other. First, this research derived the shorelines using the aerial photographies taken from 1947 until 2007 and revised the tidal levels sounding data obtained from a hydrographical survey automation system consisting of Echosounder[Echotrac 3100] and Differential Global Positioning System[Beacon]by using topographical data and ships on land obtained by applying post-processing Kinematic GPS measuring method. In addition, this research evaluated the changes and dimensional variations for the last 60 years by dividing these determined shorelines into 5 sections. As a result, the Haewundae Beach showed a total of 29% decrease rate in dimension as of the year 2007 in comparison with the year 1947 due to a rapid dimensional decline centering on its west areas, while the dimension of the Gwanganri Beach showed an increase in its dimension amounting to a total of 69% due to the decrease in flow velocity by artificial structures built on both ends of the beach-forming accumulation; thus, it was found that there existed a big difference in deposition & accumulation tendency depending on neighboring environment in spite of the homogeneous ocean conditions.

  • PDF

The Resolution Effects of the Satellite images on the Interpretability of Geographic Informations - Laying Emphasis on the Interpretability and the Fractal Dimension (위성영상의 해상력에 따른 지리정보의 판독 - 판독가능성과 프랙탈 차원을 중심으로)

  • Kim, Yong-Il;Seo, Byoung-Jun;Ku, Bon-Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.61-69
    • /
    • 2000
  • Until now, the extraction of information on geographic features and the compilation of maps from satellite imagery has had many limitations because of its lower resolution compared to aerial photos to the recent. However, it is expected that the availability of high resolution satellite imagery whose spatial resolution is about 1m will reduce such limitations. Currently, a compilation of national-wide digital base maps is going on to construct the National Geographic Information Systems in Korea. It will be used for many application field of the social welfare. Therefore, in this study, we suggest that satellite imagery can help it and we have experimented on the possibility of detecting and interpreting geographic data using satellite imagery of various spatial resolutions. The interpretability and detectability of 46 features in 6 categories was experimented with 6 kinds of images of different resolutions. As a subsequent procedure, we have performed the fractal analysis for a quality test of the texture information. Through the fractal analysis, we could show that texture information and probability of discrimination increases as the spatial resolution of the image increases. Based on the results of this experiment, we could suggest the possibility of the renewal and construction of the National-wide Geographic Information Systems database using satellite imagery, as well as of examining appropriate spatial resolutions for objects of interest.

  • PDF

A Study on Selecting Geospatial Framework Data Using Factor Analysis (요인분석을 이용한 기본공간정보 선정에 관한 연구)

  • Choe, Byong Nam;Lee, Ji Hun;Park, Jin Sik;Kang, In Gu
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2015
  • Several countries have built National Spatial Data Infrastructure (NSDI) for information sharing among various fields. One of the important factors of NSDI is framework data, which is the most commonly used geospatial data across various fields. Previous studies on the framework data suggest components based on frequency survey and case study. However, such research methods do not have objectivity in setting the components of the framework data. This research uses factor analysis with 104 medium-level layers from the most widely used National Base Map and 5 layers from the other sources including cadastre and aerial image. Each layer is scaled with usage level as four different patterns of 1) background data, 2) reference data, 3) base data, and 4) other data, respectively. The analysis results show that the layers are grouped into 5 to 7 factors according to the patterns. ANOVA reveals that the mean differences between the factors with high values and the other factors with low values under each pattern are statistically significant. Such high value factors under each pattern consist of similar layers, close to identical, with those under the other categories. This research proposes framework data system, including transportation, building, hydrography, elevation, administrative district, digital orthoimagery, geodetic control, and cadastral based on the analysis results. Proposed framework in this research will be a basis of establishing spatial data sharing system. For sharing proposed framework data in various fields, these data must be established and distributed as actual standard and also related future researches should be performed.

Eligibility Analysis of Land on a Reforestation CDM Project in Goseong District, South Korea (청정개발체제하 재 조림 사업의 토지적격성에 대한 사례 분석 -고성군 재조림 사업을 중심으로-)

  • Guishan, Cui;Kwon, Tae-Hyub;Lee, Woo-Kyun;Kwak, Hanbin;Nam, Kijun;Song, Yongho;Hangnan, Yu
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.216-222
    • /
    • 2013
  • For reducing greenhouse gases, many countries carried out a series of activities not only at home but abroad. Particularly, after the release of the Kyoto Protocol, either nation or companies' participation was intensified, due to endow to responsibility of emission limits. This study focused on reforestation CDM work in Goseong Gun based on clean development system. Obstacle factors of land eligibility could be distinguished to three periods: before December 31th 1989, present and future. The obstacle before December 31th 1989 was that land cover of study area hardly illustrated by Landsat image, due to the low resolution, which were confirmed by a document of Grassland Composition Permission instead. The problem of current land eligibility is that the area of trees presence are difficult to be determined as forest or not. The boundary of forest in strata was identified, using 3-Dimensional Cartography Machine and aerial photograph. Land eligibility would still have obstacle whether the study area with trees presence has potentiality to be forest in the future at situation in absence of reforestation project. This was resolved by prediction of tree growth using stem analysis during execution of the project at study area.

Using Numerical Maps to Select Solar Panel Installation Sites no Expressway Slopes (수치지도를 이용한 고속국도 주변 태양광 패널 설치 대상지 선정)

  • Jung, Jaehoon;Kim, Byungil
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.5
    • /
    • pp.71-77
    • /
    • 2016
  • Solar energy is a viable source to replace fossil fuels. However, challenges associated with site selection for solar panel installation inhibit the uptake of solar energy systems. Expressway slopes offer a potentially attractive alternative for solar panel installation for the following reasons: expressway slopes are vacant public sites, they are abundant (about 4,193km in South Korea), and they are linear in nature. Traditoinally when selecting sites for solar systems conventional surveying methods are employed. Unfortunately, these methods can be dangerous, time consuming, and labor intensive. To overcome these limitations of conventional site selection methodologies, we propose an automated approach using numerical maps. First, contour and expressway polylines are extracted separately from numeric maps. The extracted contour lines are then converted into a digital terrain model; this is used to calculate aspect and slope information. Next, the extracted expressway lines are projected onto a binary image and refined to recover the disconnections, and then applied to create a buffer zone to narrow the search space. Finally, all data sets are overlaid to identify candidate sites for solar panel systems and are visually verified through comparisons with aerial photos.

Evaluation of Accuracy and Utilization of the Drone Photogrammetry for Open-pit Mine Monitoring (노천광산 모니터링을 위한 드론 사진측량의 정확도 및 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.191-196
    • /
    • 2019
  • The development of open-pit mines leads to large-area topographical changes in highland forests and can lead to severe deterioration of forests, requiring continuous monitoring. The drone photogrammetry is performed at a lower altitude than the existing manned aerial photogrammetry, and thus has a relatively high accuracy. The purpose of this study is to construct spatial information of large open pit mine using drone photogrammetry and to evaluate the accuracy and utilization of the results. The accuracy of the drone photogrammetric results was 0.018 ~ 0.063m in the horizontal direction and 0.027m ~ 0.088m in the vertical direction. These results satisfy the permissible accuracy of 1: 1,000 digital topographic map and it can be used for open mine monitoring. The geospatial information of the open pit mine can be used in various ways, and it can be used to monitor the quantitative change of a specific area for time series change through data management by periodic data acquisition. If drone photogrammetry is applied to open-pit mine monitoring in the future, work time and cost can be greatly reduced compared to the conventional GNSS or total station method, and the work efficiency can be greatly improved because more visible data can be generated.

Accuracy Analysis of Cadastral Control Point and Parcel Boundary Point by Flight Altitude Using UAV (UAV를 활용한 비행고도별 지적기준점 및 필지경계점 정확도 분석)

  • Kim, Jung Hoon;Kim, Jun Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.223-233
    • /
    • 2018
  • In this study was classified the cadastral control points and parcel boundary points into 40m, 100m by flight altitude of UAV (Unmanned Aerial Vehicle) which compared the coordinates extracted from the orthophoto with the parcel boundary point coordinates by GNSS (Global Navigation Satellite System) ground survey. As a results of this study, first, in the spatial resolution analysis that the average error of the orthoimage by flight altitude were 0.024m at 40m, and 0.034m at 100m which were higher 40m than 100m for spatial resolution of orthophotos and position accuracy. Second, in order to analyze the accuracy of image recognition by airmark of flight altitude that was divided into three cases of nothing, green, and red of RMSE (Root Mean Square Error) were X=0.039m, Y=0.019m and Z=0.055m, the highest accuracy. Third, the result of the comparison between orthophotos and field survey results that showed the total RMSE error of the cadastral control points were X=0.029m, Y=0.028m, H=0.051m, and the parcel boundary points were X=0.041m, Y=0.030m. In conclusion, based on the results of this study, it is expected that if the average error of flight altitude is limited to less than 0.05m in the legal regulations related to orthophotos for cadastral surveying, it will be an economical and efficient method for cadastral survey as well as spatial information acquisition.