• 제목/요약/키워드: Aerial Orthoimage

검색결과 46건 처리시간 0.025초

항공사진 영상과 위성 영상간의 지형지물 비교.분석 (Comparison and Analysis of Features between Aerial Photo Image and Satellite Image)

  • 김감래;김재연
    • 한국측량학회지
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2003
  • 최근 항공사진 정사영상의 활용이 증가하고 있으며, 이에 맞추어 고해상도 위성영상을 이용한 지리정보시스템 구축을 위한 많은 연구가 진행 중에 있다. 또한 공간해상도가 6.6m급인 아리랑 1호 위성영상을 이용한 많은 연구가 시행중인 이즈음, 항공사진과 위성영상간의 판독성에 대한 평가가 필요하다. 이 연구에서는 항공사진을 스캔한 영상, 그 항공사진을 이용하여 아리랑 1호와 동일한 해상도로 재배열한 영상, 그리고 아리랑 1호 위성영상을 실험 영상으로 이용하여 각각 정사영상을 제작하고, 판독하려는 지형지물을 분류하였으며, 각각의 정사영상에서 그 분류항목에 대한 판독이 어느 수준까지 가능한지에 대한 평가를 하였다. 판독 분석결과, 판독을 위해 분류한 지형지물 중 항공사진을 이용한 정사영상에서 판독할 수 있는 지형지물의 양에 비해 항공사진 영상을 재배열한 영상의 정사영상에서는 대략 61%, 아리랑 1호 위성영상의 정사영상에서는 대략 41%를 판독할 수 있었으며, 이와 같은 실험연구를 통해 아리랑 1호 위성 영상은 지도갱신, 비접근지역에 대한 지형정보 획득, 환경감시 등의 분야에 활용할 수 있을 것으로 판단하였다.

다중 항공영상을 이용한 엄밀정사영상 생성 (True Orthoimage Generation Using Multiple Aerial Images)

  • 유은진;이동천
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.225-226
    • /
    • 2010
  • The problem in orthoimage generation is to recover occlusion areas. In this study, occlusion areas - double mapping regions of the building roofs - were mutually corrected by using multiple images. The proposed method could be efficient for generating true orthoimages in urban areas.

  • PDF

정밀정사영상 생성을 위한 패치기반 처리와 폐색지역 복원 (Patch-Based Processing and Occlusion Area Recovery for True Orthoimage Generation)

  • 유은진;이동천
    • 한국측량학회지
    • /
    • 제28권1호
    • /
    • pp.83-92
    • /
    • 2010
  • 고해상도 항공 디지털 사진기와 고밀도 3차원 데이터를 획득할 수 있는 항공 레이저 스캐너의 보급은 사진측량 및 공간정보 분야에 큰 발전을 가져왔다. 본 연구는 패치기반의 정사영상을 생생하여 폐색지역을 탐색하고 정사영상에서 발생하는 폐색지역을 복원하여 정밀정사영상을 생성하는 방법을 개발하는 것을 목적으로 한다. 정사영상에서 발생하는 폐색지역의 처리를 위하여 대상지역을 포함하고 있는 다중 영상들을 이용하여 상호 복원하는 방법을 개발하였다. 제시된 방법을 적용하면 폐색지역이 많이 발생하는 도심지역의 정밀정사영상을 효율적으로 생성할 수 있을 것으로 판단된다.

무인항공사진측량 소프트웨어를 이용한 3차원 공간정보 생성 및 비교 (Generation and Comparison of 3-Dimensional Geospatial Information using Unmanned Aerial Vehicle Photogrammetry Software)

  • 양승룡;이학술
    • 한국재난정보학회 논문집
    • /
    • 제15권3호
    • /
    • pp.427-439
    • /
    • 2019
  • 연구목적: 다양한 목적으로 생성되는 무인비행체 기반의 공간정보를 서로 다른 SW로 생성하고, 정사영상 및 DSM의 위치정확도 분석과 3D mesh의 텍스처 매핑을 비교 분석하고자 하였다. 연구방법: 서로 다른 두 개의 SW를 이용하여 동일한 무인항공영상 데이터를 처리하고, 공간정보를 생성하였다. 생성된 공간정보 중 정사영상과 DSM은 수평위치 및 수직위치 오차의 RMSE를 계산함으로써 정량적 분석을 수행하고, 정성적 분석을 수행함으로써 무인항공사진측량 SW의 공간정보 생성 결과를 비교분석하고자 하였다. 연구결과: 각각의 SW로 생성된 정사영상 및 DSM의 위치정확도에서는 큰 차이가 없었으며, 3D mesh의 텍스쳐 매핑에서 차이를 보였다. 3D mesh의 생성에는 무인항공사진측량 SW가 영향을 미치는 것을 알 수 있었다. 결론: 무인비행체 기반의 공간분석을 위한 정사영상, DSM의 생성에는 SW에 따른 영향이 없는 것으로 나타났으나 3D 가시화를 목적으로 할 경우에는 SW에 따라 텍스처 매핑 결과가 다르게 나타나는 것을 알 수 있었다.

라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화 (Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage)

  • 정윤재;박현철;정연인;조명희
    • 한국지리정보학회지
    • /
    • 제14권1호
    • /
    • pp.84-93
    • /
    • 2011
  • 제방선 지도화는 하천지역의 환경보호와 하천 범람 방지, 그리고 하천 개발에 있어 매우 중요하다. 라이다(LiDAR)와 항공 정사영상(aerial ortho-image)과 같은 원격탐사 데이터의 활용은 대상 지역에 접근하지 않고도 대상 지역에 관한 지형 정보를 얻을 수 있다는 점 때문에, 하천 지도화 작업에 효율적이다. 라이다 자료는 얕은 물을 관통하는 능력과 높은 수직 정확도 때문에 하천구역 지도화 작업에 활용되어 오고 있다. 영상자료의 활용 또한 영상처리 기법을 이용하여 여러 특징들을 추출할 수 있다는 점 때문에 하천 지도화 작업에 효율적이다. 본 논문에서는 라이다와 항공 정사영상을 각각 활용하여 3차원 제방선 지도화 작업을 수행하였다. 그리고 지상 실측정보들을 통해 두 자료로부터 추출된 제방선들의 정확도를 측정하고, 두 측정 결과들을 비교한다. 통계적인 결과에서 나타나듯이 라이다를 활용하여 추출된 3차원 제방선이 항공 정사영상을 활용하여 추출된 3차원 제방선에 비해 수평 및 수직 정확도가 훨씬 더 높다는 것을 보여준다.

중복도와 지상기준점에 따른 고정익 UAV 기반 정사영상 및 DSM의 품질 평가 (Quality Evaluation of Orthoimage and DSM Based on Fixed-Wing UAV Corresponding to Overlap and GCPs)

  • 유용호;최재완;최석근;정성혁
    • 대한공간정보학회지
    • /
    • 제24권3호
    • /
    • pp.3-9
    • /
    • 2016
  • UAV(unmanned aerial vehicle)은 적은 비용으로 고해상도 정사영상과 DSM(digital surface model)을 빠르게 생성할 수 있다. 그러나, UAV에 의하여 획득된 정사영상과 DSM의 수직 및 수평위치 정확도는 영상처리 기술, 항공사진의 품질, GCPs(ground control points)의 개수와 위치, 촬영경로 상의 중복도에 영향을 받는다. 본 연구에서는, 정사영상과 DSM의 생성에 있어 중복도와 GCP의 개수가 미치는 영향을 분석하고자 하였다. 위치정확도는 9쌍의 자료를 이용한 RMSE(root mean square error)을 기반으로 평가하였다. 실험결과, GCP의 개수와 중복도는 수평위치 및 수직위치 정확도에 영향을 미치는 것을 확인하였다.

디지털항공영상을 이용한 수치지도의 건물레이어 갱신 (Updating Building Layer of Digital Map Using Airborne Digital Camera Image)

  • 황원순;김감래
    • 대한공간정보학회지
    • /
    • 제15권4호
    • /
    • pp.31-39
    • /
    • 2007
  • 최근 국내의 항공디지털카메라 영상의 도입 및 공급이 현실화됨에 따라 정사영상 및 수치지도를 포함한 지리정보제작에 많은 관심이 모아지고 있다. 따라서, 본 연구에서는 항공디지털사진의 정사영상을 제작하여 수치지도를 갱신하는 방법을 제시하고자 하였다. GPS 측량성과를 이용하여 기하보정을 수행하고, 항공 Lidar DEM을 이용하여 정사영상을 제작하였으며, GPS측량성과를 이용하여 절대위치정확도평가, 수치지도의 건물레이어에 대해서는 1/1,000 수치지도를 이용하여 상대위치정확도평가를 수행하였다. 정사영상에 대한 정확도 평가결과, RMSE가 X, Y방향으로 각각 ${\pm}0.076m,\;{\pm}0.294m$가 발생하였으며, 수치지도에 대한 정확도 평가결과, RMSE가 X, Y방향으로 각각 ${\pm}0.250m,\;{\pm}0.210m$이 발생하였으므로, 항공디지털사진의 정사영상을 이용한 수치지도의 건물레이어 갱신결과는 국토지리정보원 규정의 허용오차 이내였으므로, 향후 기본지리정보 구축은 물론 지자체의 GIS사업 및 다양한 분야에 활용할 수 있다.

  • PDF

ORTHORECTIFICATION OF A DIGITAL AERIAL IMAGE USING LIDAR-DRIVEN ELEVATION INFORMATION

  • Yoon, Jong-Suk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.181-184
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study sequentially utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using DTM and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

  • PDF

Ortho-rectification of a Digital Aerial Image using LiDAR-derived Elevation Model in Forested Area

  • Yoon, Jong-Suk
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.463-471
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using digital terrain model (DTM) and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method used in a previous research. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

Quick Bird 정사영상을 이용한 지형도 갱신 (Update of Topographic Map using QuickBird Orthoimage)

  • 이창경;우현권;정인준
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.295-301
    • /
    • 2004
  • Satellite captures images periodically and economically over the area wider than aerial photographs, and reconnaissance to unapproachable area. For these advantages, mapping using high resolution satellite image has high potentials of marketability and development. Therefore, utilization of satellite image in mapping and GIS is expected to be growing and research on describable feature, positional accuracy and, possible mapping scale is urgently needed. This research presented that Quick Bird orthoimage could be used to update digital map on a scale of 1:5,000. Quick Bird image was corrected geometrically based on ground control points. DEM was generated using height data of digital topographic map. The orthoimge was produced by digital differential rectification based on DEM which was generated using height data of digital topographic map(scale 1;5,000 and 1;1,000). When the digital topographic map was overlaid with the orthoimage, it was very easy to find changed region or new features builded after the map compiled.

  • PDF