• Title/Summary/Keyword: Aerial Line

Search Result 200, Processing Time 0.026 seconds

3D Building Detection and Reconstruction from Aerial Images Using Perceptual Organization and Fast Graph Search

  • Woo, Dong-Min;Nguyen, Quoc-Dat
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.436-443
    • /
    • 2008
  • This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract useful building location information from the generated disparity map to segment the interested objects and consequently reduce unnecessary line segments extracted in the low level feature extraction step. Hypothesis selection is carried out by using an undirected graph, in which close cycles represent complete rooftops hypotheses. We test the proposed method with the synthetic images generated from Avenches dataset of Ascona aerial images. The experiment result shows that the extracted 3D line segments of the reconstructed buildings have an average error of 1.69m and our method can be efficiently used for the task of building detection and reconstruction from aerial images.

Power Line Detection of Arial Images Using Hough Transform (하프변환을 이용한 항공영상의 전력선 검출)

  • Kim, Dong-Wook;Kang, Jeong-Hyuck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • Effective monitoring and maintenance operation of towers, power lines and other defects to ensure high quality and reliability of electric power supplied to customers is becoming one of the most important tasks of today's power industry. One specific technology that has the potential to automate the entire surveillance process is unmanned aerial vehicles. In this paper, we propose a new power line extraction method using the directivity of a power line and Hough transform to detect efficiently power lines from thermal aerial images. In simulation results for several aerial images, the proposed method shows good performance in extracting power line detection.

Comparison and Performance Validation of On-line Aerial Triangulation Algorithms for Real-time Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 온라인 항공삼각측량 알고리즘의 비교 및 성능 검증)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • Real-time image georeferencing is required to generate spatial information rapidly from the image sequences acquired by multi-sensor systems. To complement the performance of position/attitude sensors and process in real-time, we should employ on-line aerial triangulation based on a sequential estimation algorithm. In this study, we thus attempt to derive an efficient on-line aerial triangulation algorithm for real-time georeferencing of image sequences. We implemented on-line aerial triangulation using the existing Given transformation update algorithm, and a new inverse normal matrix update algorithm based on observation classification, respectively. To compare the performance of two algorithms in terms of the accuracy and processing time, we applied these algorithms to simulated airborne multi-sensory data. The experimental results indicate that the inverse normal matrix update algorithm shows 40 % higher accuracy in the estimated ground point coordinates and eight times faster processing speed comparing to the Given transformation update algorithm. Therefore, the inverse normal matrix update algorithm is more appropriate for the real-time image georeferencing.

Line Segments Extraction by using Chain Code Tracking of Edge Map from Aerial Images (항공영상으로부터 에지 맵의 체인코드 추적에 의한 선소추출)

  • Lee Kyu-won;Woo Dong-min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.709-713
    • /
    • 2005
  • A new algorithm is proposed for the extraction of line segments to construct 3D wire-frame models of building from the high-resolution aerial images. The purpose of this study Is the accurate and effective extraction of line segments, considering the problems such as discordance of lines and blurred edges existing in the conventional methods. Using the edge map extracted from aerial images, chain code tracking of edges was performed. Then, we extract the line segments considering the strength of edges and the direction of them. SUSAN (Smallest Uni-value Segment Assimilating Nucleus) algorithm proposed by Smith was used to extract an edge map. The proposed algorithm consists of 4 steps: removal of the horizontal, vertical and diagonal components of edges to reduce non-candidate point of line segments based on the chain code tracking of the edge map, removal of contiguous points, removal of the same angle points, and the extraction of the start and end points to be line segments. By comparing the proposed algorithm with Boldt algorithm, better results were obtained regarding the extraction of the representative line segments of buildings, having relatively less extraction of unnecessary line segments.

Placement Optimization of Airborne Line-Of-Sight Datalink Directional Antenna in UAV (무인항공기 탑재 가시선 데이터링크 방향성 안테나 위치 최적화)

  • Kim, Jihoon;Choi, Jaewon;Chung, Eulho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.18-24
    • /
    • 2014
  • In this paper, the optimum placement of airborne line-of-sight (LOS) datalink directional antenna to minimize the datalink loss within the operation range of unmanned aerial vehicle (UAV) is analyzed by using the electromagnetic (EM) simulation. In quick banking of UAV, the datalink loss is occurred due to the electromagnetic distortion and transmission loss by the fuselage blockage. In general, the banking angle of UAV is limited to prevent the datalink loss. However, in this case, there is the problem that the mission performance ability is largely limited by the banking radius increase. To solve this problem, the optimum placement to mount the airborne LOS datalink 1-axis directional antenna on both the top and bottom surfaces of fuselage is analyzed by using EM simulation. The 1-axis antenna with large vertical beamwidth is used because the banking angle of UAV is dependent on the vertical beamwidth of antenna. Also, there is the benefit to reduce largely the weight because the 1-axis antenna can be mounted instead of the 2-axis one.

Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle

  • Hwang, Soo-Jung;Choi, Seong-Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • The power plant system of a tilt rotor unmanned aerial vehicle (UAV) was verified by the Ironbird ground test, which considerably reduces cost and risk during the developmental stages. The function and performance of the engine, drive line, nacelle conversion, and rotor systems were evaluated using a building block test approach. The Ironbird test concept facilitates the discovery of potential faults in earlier stages of the testing period. As a result, the developmental testing period could effectively be shortened. The measured test data acquired through a ground control and data acquisition system exhibited satisfactory results which meet the developmental specifications of a tilt rotor UAV.

A study on the estimation of relative shift from aerial image sequences (연속항공영상에서의 상대적 편이 추정에 관한 연구)

  • Hwang, Y.S.;Lee, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.825-828
    • /
    • 1991
  • This paper addresses estimation of the relative shift vector from aerial image sequences. We perform similarity function tests and decide the most appropriate similarity function for the visual navigation system using aerial images. Finally, we propose the maximum variance reference line selection method for reducing the estimation error of the shift vector.

  • PDF

Accuracy Analysis of Aerial Photogrammetry for Digital Cadastral Map (수치지적도화를 위한 항공사진측량의 정확도 분석)

  • Yun, Bu-Yeol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1191-1197
    • /
    • 2022
  • Recently, many studies have been conducted to utilize the digital aerial photogrammetry method in the field of cadastral surveying. The representative models of digital cameras currently used for aerial photogrammetry are classified into line-type and convex-type cameras, so the representative models were selected and analyzed. The purpose of this study was to analyze whether the accuracy suggested by the cadastral survey enforcement rules was satisfied by comparing the orthogonal and ortho image performance. As a result, there were some representative false points that exceeded the acceptable range, but the results extracted from most of the images were shown to satisfy the acceptable range. Therefore, it can be said that the application of digital aerial photogrammetry to the cadastral field in the technical aspect has sufficient potential.

Line segment grouping method for building roof detection in aerial images (항공영상에서 건물지붕 검출을 위한 선소의 그룹화 기법)

  • Ye, Cheol-Su;Im, Yeong-Jae;Yang, Yeong-Gyu
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.133-140
    • /
    • 2002
  • This paper presents a method for line segment grouping used for detection of various building roofs. First, by using edge preserving filtering. noise is eliminated and then images are segmented by watershed algorithm, which preserves location of edge pixels. To extract line segments between control points from boundary of each region, we calculate curvature of each pixel on the boundary and then find the control points. Line linking is performed according to direction and length of line segments and finally the location of line segments is adjusted using gradient magnitudes of all pixels of the line segment. The algorithm has been applied to aerial imagery and the results show accurate building roof detection.

  • PDF