• Title/Summary/Keyword: Aeration speed

Search Result 93, Processing Time 0.019 seconds

Fermentation Process Characteristics of Phaffia rhodozyma Mutant B76 for Astaxanthin Biosynthesis (Astaxanthin 생합성을 위한 Phaffia rhodoxyma 변이주 B76의 발효공정 특성)

  • 임달택;이은규
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2000
  • Specific carotenoids and astaxanthin biosynthesis power of Phaffia rhodozyma mutant 876, which was obtained after NTG a and UV treatments, was higher than those of the wild type by 40% and 50%, respectively. The mutant strain did not show t the catabolite repression even at 22% (w/v) glucose concentration. The optimum C{N ratio was 2.0, and the optimum t temperature and initial pH were $22^{\circ}C$ and 6.0, respectively. 80th cell growth and astaxanthin formation decreased drastically a as the fermentation temperature was increased over $22^{\circ}C$, whereas they were comparable in the pH range between 5.0 and 7 7.0. Inoculum size did not affect the final cell density nor the carotenoids biosynthesis, and 3%(v/v) was selected as optimal. H Higher dissolved oxygen concentration facilitated astaxanthin biosynthesis, and aeration rate of 1.0 v/0/m and agitation speed of 400 rpm were selected as optimum. The final cell dens때 of 43.3 g/L and the volumetric astaxanthin and carotenoids concentrations of 110.6 mg/L and 149.4 mg/L, respectively, were obtained. The specific carotenoids concentration was 3.45 m mg{g-yeast(dry). Yx/s and Yp/s values of 0.37 and 1.08 were obtained. The result of this study will provide basic information u useful for mass production of astaxanthin from P. rhodozyma fermentation.

  • PDF

Optimum Conditions for the Culture of Hericium erinaceum in a Jar Fermenter with the Addition of Ginseng Extract in the Liquid Medium (수삼추출물을 이용한 노루궁뎅이버섯 균사체의 jar fermenter에서의 발효조건 최적화)

  • Park, Chang-Kyu;Tu, Qi;Cho, Ju-Hyun;Yu, Kwang-Won;Jeong, Heon-Sang;Lee, Hyeon-Yong;Jeong, Jae-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.82-89
    • /
    • 2010
  • To obtain functional materials from a submerged culture of Hericium erinaceum, a suitable basal medium for flask culture was screened and the optimal culture conditions in a jar fermenter were investigated with the addition of ginseng extracts (GE) to the basal liquid medium. Of all tested basal liquid media, the mushroom complete medium (MCM) supplemented with 0.5% of GE produced the highest mycelial dry weight (MDW) of 5.91 g/L in the flask, which reached a plateau at $25^{\circ}C$, pH 5.5 after 10 days. The submerged culture conditions for the mass production of mycelia in a 50 L jar fermenter were also optimal at $25^{\circ}C$, pH 5.5, 120 rpm agitation speed and 0.4 vvm aeration rate. Under these conditions, the maximum MDW was produced, which reached a value of 4.28 g/L within 5 days. When we investigated the effects of the amount of GE in the MCM on the production of MDW in the jar fermenter, the addition of 5% GE (HE-GE-5) under the optimal culture conditions produced the maximum MDW (4.93 g/L). In addition, the crude polysaccharide of HE-GE-5 contained mainly neutral sugars (63.2%) with considerable amounts of uronic acid (19.3%) and a small amount of proteins (8.8%) and it had potent immunostimulation properties.

Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry (미강을 이용한 해양미생물 Bacillus atrophaeus LBH-18 유래의 carboxymethylcellulase 생산의 최적화)

  • Kim, Yi-Joon;Cao, Wa;Lee, Yu-Jeong;Lee, Sang-Un;Jeong, Jeong-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1295-1306
    • /
    • 2012
  • A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus atrophaeus. This species was designated as B. atrophaeus LBH-18 based on its evolutionary distance and the phylogenetic tree resulting from 16S rDNA sequencing and the neighbor-joining method. The optimal conditions for rice bran (68.1 g/l), peptone (9.1 g/l), and initial pH (7.0) of the medium for cell growth was determined by Design Expert Software based on the response surface method; conditions for production of CMCase were 55.2 g/l, 6.6 g/l, and 7.1, respectively. The optimal temperature for cell growth and the production of CMCase by B. atrophaeus LBH-18 was $30^{\circ}C$. The optimal conditions of agitation speed and aeration rate for cell growth in a 7-l bioreactor were 324 rpm and 0.9 vvm, respectively, whereas those for production of CMCase were 343 rpm and 0.6 vvm, respectively. The optimal inner pressure for cell growth and production of CMCase in a 100-l bioreactor was 0.06 MPa. Maximal production of CMCase under optimal conditions in a 100-l bioreactor was 127.5 U/ml, which was 1.32 times higher than that without an inner pressure. In this study, rice bran was developed as a carbon source for industrial scale production of CMCase by B. atrophaeus LBH-18. Reduced time for the production of CMCase from 7 to 10 days to 3 days by using a bacterial strain with submerged fermentation also resulted in increased productivity of CMCase and a decrease in its production cost.