• Title/Summary/Keyword: Aeration rate

Search Result 415, Processing Time 0.021 seconds

Vinegar Production by Acetobacter aceti Cell Immobilized in Calcium Alginate (Calcium Alginate로 고정화된 Acetobacter aceti에 의한 식초생산)

  • 유익제;박기문유연우최춘언
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.167-173
    • /
    • 1990
  • This study is to investigate for obtaining the operating conditions of continuous vinegar production using fluidized bed reactor by Acetobacter aceti cell immobilized in Ca-alginate gel. The optimum conditions obtaining by batch fermentation using fluidized bed reactor were as follows; The fermentation temperature and aeration rate were 3$0^{\circ}C$ and 1.0VVM and the initial concentration of ethanol and acetic acid in medium were 33g/l and 27g/l respectively. The amount of bead used was 25%(w/v). The overall acetic acid productivities of batch fermentations by free cell and immobilized cell were 0.31g/l-hr and 0.48g/l-hr, respectively, at the final acetic acid concentration of 50g/l. In the continuous vinegar production using fluidized bed reactor by immobilized cell under optimum conditions, it was possible to produce 23g/l acetic acid continuously up to 90 days with maximum acetic acid productivity of 2.76g/l-hr at dilution rate 0.12hr-1.

  • PDF

A Study on the Optimal Control Algorithms for the Advanced Wastewater Treatment Process with Variable Hydrodynamic Flow Patterns (유로 변경식 고도하수처리 공정의 최적 제어 알고리즘에 관한 연구)

  • Kang, Seong-Wook;Cho, Wook-Sang;Huh, Hyung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.217-225
    • /
    • 2005
  • Because of the limitation of controllable operation variables for the wastewater treatment process with variable hydrodynamic flow patterns, it may preclude the use of this type of nutrient removal activated sludge process. As the operation variables, only temperature and dissolved oxygen (DO) have been used to operate the process. This study made an effort to improve treatment efficiency and operability of the process by the following methodologies: 1) process and operation data analysis using process simulation, 2) determination of optimal control logic or algorithm using a pilot-scaled experimental apparatus and its operations, and 3) application of experimental and simulation results to find the optimal process operation modes. In this study, it was found that the optimal operation mode named 'save mode' in the basis of process variables, such as the ammonia-nitrogen concentration of inlet flow, temperature and flow rate, can reduce the operation cost comparing with the present normal operation mode. And the stable conditions in nitrification were also shown by the proportional control of DO with the inlet air flow rate of blower and the mixing rate of mechanical aeration.

Chemical/Electro-Chemical Method for Swine Wastewater Treatment (화학적/전기화학적 방법을 이용한 돈사폐수 처리)

  • Yoon, S.J.;Jo, W.S.;Kim, C.H.;Park, J.I.;Shin, J.S.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.641-648
    • /
    • 2003
  • In a batch mode treatment process, which electrolyzes the wastewater after derivation of N-P crystal formation and recovery, the characteristics of pollutant removal induced with the changes of loading rate and hydraulic retention time were studied. $MgCl_2$ was used as Mg source for the formation of struvite and the molar ratio of $MgCl_2$ to $PO_4^{3-}$ in influent was 1.3. When analyzing the average treatment efficiencies and removal characteristics obtained from four separate operations (Run I, II, III, IV), removal efficiencies of PO43- was not function of its loading rate. Under a condition of sufficient aeration and Mg source provided, over 88% of $PO_4^{3-}$ was eliminated by the formation of MAP without any pH adjustment, in spite of loading rate variation. An optimum-loading rate of NH4-N to achieve high removal efficiency was approximately $100g/m^3/d$. Below that loading rate, the removal of NH4-N was proportional to the loading rate into the system, and hence stable and high removal efficiency, over 90%, was achieved. However, when the loading rate increased over that rate, removal efficiency began to drop and fluctuate. Removal efficiency of TOCs was dependant upon the hydraulic retention time ($r^2$=0.97), not upon the loading rate. Stable and high color removal (94%) was obtained with 2 days of HRT in electrolysis reactor.

Change of Sludge Denitrification and Nitrification Rate according to the Operating Conditions in Advanced Wastewater Treatment Processes (하수고도처리공법의 유입하수량 변화에 따른 슬러지 질산화/탈질속도 변화)

  • Lee, Myoung-Eun;Oh, Jeongik;Park, No-Suk;Ko, Dae-Gon;Jang, Haenam;Ahn, Yongtae
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • The purpose of this study is to investigate the changes of sludge characteristics according to the changes of influent sewage flowrate in the advanced wastewater treatment processes including MBR, SBR, and $A_2O$. The ratio of the actual sewage flowrate to the design flowrate is decreased from 100% to 70, 40%, and 10%, and the specific denitrification rate and ammonia oxidation (nitrification) rate was measured. The specific nitrification rate of the sludge collected from the aeration tank of each process was measured at a similar value ($0.10gNH_4/gMLVSS/day$) in all three process under the condition of 100% of sewage flowrate. It has tended to decrease significantly as the sewage flowrate decreased from 70% to 40%. The specific denitrification rate was also decreased by ~50% as the sewage flowrate decreased. However, considering the total nitrogen concentration in the influent and the microbial concentration in the reactor, the changes in kinetic parameter did not affect overall nitrogen removal. Therefore, it can be concluded that stable nitrogen removal will be possible under low influent flowrate condition if the MLVSS concentration is kept high.

Simultaneous Nitrification and Denitrification using Submerged MBR packed with Granular Sulfur and Non-woven Fabric (부직포 및 황 충진 MBR을 이용한 포기조내 동시 질산화/탈질에 관한 연구)

  • Moon, Jin-Young;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.439-446
    • /
    • 2009
  • This study was performed to evaluate SND(simultaneous nitrification and denitrification)efficiency, nitrogen removal efficiency and filtration function of non-woven fabric by using submerging MBR packed with granular sulfur covered with non-woven fabric filter. Synthetic wastewater was used as influent wastewater. Concentration of $NH_4{^+}-N$ in influent was maintained about 40 mg/L and the experiment was performed in four phases according to the flow rate. Nitrogen loading rate divided four phases ranging from $0.04 kg\;NH_4{^+}-N/m^3-day$ to $0.16 kg\;NH_4{^+}-N/m^3-day$. As a result, the maximum $NH_4{^+}-N$ removal rate was accomplished at $0.142 kg\;NH_4{^+}-N/m^3-day$ in nitrogen loading of $0.147 kg\;NH_4{^+}-N/m^3-day$. Nitrification efficiency was higher than 95% in all phases. $NO_3{^-}-N$ loading rate was adjusted ranging from $0.22 kg\;NO_3{^-}-N/m^3-day$ to $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal rate was accomplished up to $0.71 kg\;NO_3{^-}-N/m^3-day$ in $NO_3{^-}-N$ loading of $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal efficiency was 95% in $NO_3{^-}-N$ loading of $0.22 kg\;NO_3{^-}-N/m^3-day$. T-N removal rate was 90% and concentration of T-N in effluent was 3.7 mg/L in T-N loading rate of $0.039 kg\;NO_3{^-}-N/m^3-day$. In this study, TMP in reactor with and without non-woven fabric filter were observed to define fouling of hollow-fiber membrane module. Reaching time to standard washing pressure(22 cm Hg) of two reactors were 29 days with non-woven fabric But the reactor without non-woven fabric reached standard washing pressure only after 4 days. Accordingly, non-woven fabric was demonstrated the superiority as a filtration ability. With high nitrogen removal rate and decreasing of fouling of membrane, MBR packed with granular sulfur covered with non-woven fabric filter submerging in activated sludge aeration tank can be used as an advanced treatment process.

Substrate Removal Condition in Activated Sludge Process of Wastewater from Acetaldehyde Manufacturing Plant (Acetaldehyde폐수의 활성오이법에 의한 기질제거조건)

  • 금영일;금두조
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.1
    • /
    • pp.107-116
    • /
    • 1993
  • This study is conducted to investigate treatability by activated sludge process for wastewater from acetaldehyde manufacturing plant. The optimum hydraulic retention time in aeration tank for removal of high strength substrate were measured. The removal efficiency were checked out by hydraulic retention time : 35hr., 40hr. and 45hr., respectively. $COD_{Cr}$, like substances were removed in all hydraulic retention time zone directed for efficiency, but non-biodegradable substances were remained. $COD_{Cr}$ biomass loading was 0.81kg $COD_{Cr}/kgMLVSS$ . day at 35hr. of retention time, 0.34 kg$COD_{Cr}$/kg MLVSS . day at 40hr., and O.l9kg$COD_Cr$/kgMLVSS . day at 45hr. And the mean $COD_{Cr}$, removal efficiency was 65.5%, 81.6% and 83.0%, respectively. And also $COD_{Cr}$, volume loading was 1.01kg$COD_{Cr}/m^3$ day, 0.87kg$COD_{Cr}/m^3$ - day, and 0.79kg$COD_{Cr}/m^3{\cdot }$day, respectively. The basic design parameter obtained is as fallows. The value of Specific substrate removal rate coefficient (k), Yield coefficient(Y) and Decay coefficient($k_d$) was $0.0013day^{-1}$, $0.505kgMLVSS/kgCOD_{Cr}$ and $0.040day^{-1}$, respectively.

  • PDF

Pseudomonas aeruginosa BYK-2에 의한 생물유화제에 발효생산

  • Kim, Hak-Ju;Lee, Gyeong-Mi;Jeong, Hye-Seong;Kim, Bong-Jo;Gang, Yang-Sun;Gong, Jae-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.263-266
    • /
    • 2000
  • The purified biosurfactant $3.16g/{\ell}$ was obtained after cultivation for 104hr at $25^{\circ}C$ with an optimal agitation speed of 200rpm, an aeration rate of 2vvm in a $14{\ell}$ fermenter containing $5.5{\ell}$ of LB medium and 1%(w/v) olive oil as a carbon source. For the kinetic studies, the optimal substrate concentration was analyzed on different olive oil concentrations(0.1, 0.5, 1.0, 1.5, 2.0%(w/v)) and optimal culture conditions(MLBM, 200rpm, 2vvm at $25^{\circ}C$) in a $14{\ell}$ jar fermenter. The results obtained indicate that $K_s$=0.0086 $g/{\ell}$, $q_s$= 0.664 $g/g{\cdot}h$, $q_p$= $4.2{\times}10^{-3}$ $g/g{\cdot}h$, and ${\mu}_{max}$ was determined as $0.1449h^{-1}$.

  • PDF

Optimal Condition for the Production of Exopolysaccharide by Marine Microorganism 96CJ10356

  • Lee, Hyeon-Sang;Park, Sin-Hye;Go, Seong-Hwan;Lee, Jong-Ho;Lee, Hong-Geum
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.137-140
    • /
    • 2000
  • Marine microorganism strain 96CJ10356 produced exopolysaccharides, designated as EPS-R. To optimize culture conditions for the production of EPS-R, carbon, nitrogen, mineral salt, temperature, and pH were examined. STN medium was suggested as follow; sucrose 20, tryptone 10, NaCl 10, $MgSO_4$ 5, $CaCl_2$ 1, $KH_2PO_4$ 0.0076, $K_2HPO_4$ 0.0083, $FeCl_2$ 0.005, $MnCl_2$ 0.001, $NaMoO_4$ 0.001, $ZnCl_2$ 0.001 (g/1) and pH 7.0 About 9.23 g/l of EPS-R was obtained from the STN medium after cultivation for 120 h at $25^{\circ}C$ in 5-liter jar fermentor with an aeration rate of 0.17 vvm. Apparent viscosity and flocculation activity of the culture broth were increased with the production of the EPS-R and the maximal values were reached to 415 cp and 1400 units/ml against 0.5 % activated carbon, respectively.

  • PDF

Fed-batch cultivation for cell growth and spore production by probiotic B. polyfermenticus SCD

  • Park, Gyu-Yong;Lee, Gwang-Ho;Kim, Seong-Mi;Kim, Won-Seok;Baek, Hyeon-Dong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.390-393
    • /
    • 2001
  • The optimal temperature, pH and aeration rate for spore production by Bacillus polyfermenticus SCD in 500 ml shake flask and 5-1 jar fermenter were found to be $32^{\circ}C$, 7.0 and 1.0 vvm. respectively. When batch culture processes was performed under optimized culture conditions. viable cells were $3.3{\times}10^{10}$ CFU/ml and spore cells were $3.3{\times}10^{10}$ CFU/ml. Fed-batch culture processes were also examined with regard to higer maximum viable cell and spore production. The highe viable cells and spores were obtained in 5-1 jar fermenter at 72 h cultivation time by strategy in an intermediate feeding mode with 60% glucose solution 150 ml and 5% soybean flour solution 150 ml fed to the fermenter twice, and the productivity of spore cells was significantly increased. Finally. volumetric productivity of spore cells on fed-batch culture indicated $9.9{\times}10^8$ CFU/ml/h, which was approximately 2 times higher than batch culture. Thus, fed-batch culture show a promise as an industrial production method.

  • PDF

팽나무버섯(Flammulina velelutipes)균의 액체배양 생장조건 규명(Growth condition of Flammulina velutipes in Liquid culture)

  • Hong, Seong-Jun;Lee, Won-Ho;Park, Gi-Beom;Park, Gi-Byeong;Seong, Jae-Mo
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.355-358
    • /
    • 2001
  • Selection of optima] nutrient sources and cultural methods for liquid spawn culture of Flammulina velutipes were carried out. The optimal temperature and pH for mycelial growth of F. velutipes were $20^{\circ}C$ and 6.0 to 7.5. respectively. In the 250ml ${Delta}$-flask culture. the amount of inoculum and culture period for the optimal mycelial growth of F. velutipes were 3 mycelial disks(diametcr 6mm) and 6 days, respectively. For the mass production of submerged culture. the optimal inoculum amount and aeration rate of F. velutipes were 5%(inoculum vol/medium vol.) and l.0vvm(vol of air/vol. of medium/min), respectively.

  • PDF