• Title/Summary/Keyword: Aeration intensity

Search Result 29, Processing Time 0.026 seconds

Effect of Aeration Intensity on Simultaneous Nitrification and Denitrification Efficiency in the Submerged Moving Media Biofilm Process (완전침지형 회전매체 생물막 공정에서 포기강도 조절이 동시 질산화/탈질 효율에 미치는 영향)

  • Kim, Jun-myoung;Lee, Sang-min;Lim, Kyeong-ho;Kim, Il-gyou;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.273-279
    • /
    • 2008
  • Space separation method that use independent reactor for nitrification and other reactor for denitrification has been commonly used for biological nitrogen removal process like $A^2O$ process. However, this method needs large space and complicate pipelines and time separation method such as SBR process have a difficulty in continuous treatment. Thus biological nitrogen removal process which is capable of continuous treatment, easy opeation and space saving is urgently required. In this research, submerged moving media was used for a biofilm process and suspended sludge was used for biological nitrogen removal at the same time. In particular DO environment by controlling air flow rate was investigated for simultaneous nitrification/denitrification. Total nitrogen removal in aeration rate more than $67L/min{\cdot}m^3$ showed 51~53% and rose to 65%, 70% and 78% in $50L/min{\cdot}m^3$, $58L/min{\cdot}m^3$ and $25L/min{\cdot}m^3$ respectively. Total phosphorus removal was very low about 10~20% more than $67L/min{\cdot}m^3$ aeration rates. But total phosphorus removal roses when reduces aeration rate by $58L/min{\cdot}m^3$ low and it showed total phosphorus removal of 72% in aeration rate $25L/min{\cdot}m^3$.

Effects of Rainfall and Salinity on Reaeration (강우의 염분이 재폭기에 미치는 영향)

  • 최재성;연기석;김건흥;안상진
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.281-290
    • /
    • 1988
  • As the aeration is one of the most important roles for the purification of polluted water, aquatic aerobic microorganism makes use of aerated dissolved oxygen to decompose the pollutant and purify water. In this study, a reactor was operated in a laboratory to examine the effects of salinity and rainfall on reaeration and then a model was proposed to estimate the reaeration coefficient. From the results of the experiments, the reaeration coefficient, $k_2$($day^{-1}$), can be expressed by $k_2=k_{2f}+3.98667{\times}10^{-2}{\cdot}C+4.88437{\times}10^{-1}{\cdot}r\;where\;k_{2f}$ : the reaeration coefficient in the fresh water at $20{\circ}C,\;(day^{-1})$ C: chloride concentration, ($g/{\ell}$), r:rainfall intensity,(mm/hr) Accordingly, it is concluded that the rate of reaeration is proportional to the chloride concentration and rainfall intensity. Also, it is known that the rainfall intensity contributes to the overall oxygen balance in a body of water more significantly than the salinity.

  • PDF

Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor

  • Chai, Hongxiang;Li, Liang;Wei, Yinghua;Zhou, Jian;Kang, Wei;Shao, Zhiyu;He, Qiang
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Membrane bioreactor (MBR) technology has previously been used by water industry to treat high salinity wastewater. In this study, an anoxic-oxic biofilm-membrane bioreactor (AOB-MBR) system has been developed to treat mustard tuber wastewater of 10% salinity (calculated as NaCl). To figure out the effects of operating conditions of the AOB-MBR on membrane fouling rate ($K_V$), response surface methodology was used to evaluate the interaction effect of the three key operational parameters, namely time interval for pump (t), aeration intensity ($U_{Gr}$) and transmembrane pressure (TMP). The optimal condition for lowest membrane fouling rate ($K_V$) was obtained: time interval was 4.0 min, aeration intensity was $14.6 m^3/(m^2{\cdot}h)$ and transmembrane pressure was 19.0 kPa. And under this condition, the treatment efficiency with different influent loads, i.e. 1.0, 1.9 and $3.3kgCODm^{-3}d^{-1}$ was researched. When the reactor influent load was less than $1.9kgCODm^{-3}d^{-1}$, the effluent could meet the third discharge standard of "Integrated Wastewater Discharge Standard". This study suggests that the model fitted by response surface methodology can predict accurately membrane fouling rate within the specified design space. And it is feasible to apply the AOB-MBR in the pickled mustard tuber factory, achieving satisfying effluent quality.

Liquid Velocity and Local Fouling in Coagulation-submerged Microfiltration Module for Drinking Water Treatment (정수처리를 위한 응집-침지식 정밀여과 모듈의 유체유속 및 국부오염)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.268-275
    • /
    • 2015
  • Effects of aeration intensity on local fouling were investigated in submerged membrane modules. Higher liquid velocities were observed at the section with the lower fiber packing density. The liquid velocity is increased with increasing the gas-liquid injection factor. The high shear stress coincided with the high liquid velocity. The shear stress increases with the increasing of gas-liquid injection factor and the liquid velocity improves with the increasing of gas-liquid injection factor. Irreversible fouling resistance ($R_{ir}$) of the fiber position is significant in a local region of high suction pressure near the suction point of the fiber (position 1). The ratio of $R_{ir}/R_m$ and $R_{ir}/R_r$ of position 1 was highest compared to the position 2 and 3. Irreversible fouling resistances results confirmed the preferential deposition of foulants near the suction part of the fiber where the local suction pressure is the highest and correspondingly, more particles are accumulated to the membrane surface. The effects of local fouling along the fiber length are significant factors to optimize the design of submerged modules.

Cultivation of Chlorella Sp. Using Light Emitting Diode (발광다이오드를 이용한 클로렐라 배양 연구)

  • Lee, Tae-Yoon;Choi, Bo-Ram;Lee, Jea-Keun;Lim, Jun-Heok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.591-597
    • /
    • 2011
  • The purpose of this study was to determine optimum conditions for the cultivation of Chlorella sp. FC-21 using light emitting diodes (LEDs). Specific growth rate and cell concentration were measured for the reactors at the illuminations of different wavelengths of LEDs. Among various types of LEDs, red LEDs were the most effective light source, and also greatest increases of specific growth rate and cell concentrations were obtained when light intensity of red LEDs increased. The specific growth rate decreased when initial cell concentration increased due to the shading effect of each cell in the reactor. To determine beneficial effect of aeration to cell cultivation, micro-air bubbles were aerated at 0.35 vvm in the reactor at the illumination of red LEDs. Two and ten times greater specific growth rate and cell concentration were obtained when aeration was applied. From this study, we found that red LEDs with aeration were the most appropriate light source for the cultivation of Chlorella sp. FC-21.

Sludge Thickening Performance of the Filtration Bio-reactor Equipped with Shadow Mask Filter Module (Shadow mask 여과 모듈을 이용한 슬러지 농축 특성)

  • Jung, Yong-Jun;Kwon, Koo-Ho;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • In order to recycle the waste material and to develop the thickening unit of waste activated sludge from wastewater treatment facilities, the filtration bio-reactor equipped with a shadow mask filter module was employed for this work from which the operating properties and parameters were drawn. The sludge thickening and filtration unit is made of cylindrical acryl tank(12cm i.d. ${\times}$ 58cm height: working volume of 6L), where the flat-sheet type of shadow mask filter module(pore size: 220~250um, opening area: 34.8~39.6%) was installed and the effluent was withdrawn from the effluent port at the lowest point of the reactor, and the filtration was performed only by the hydraulic pressure. For evaluating the operating performance of this reactor, some parameters such as the solid-liquid separation of different biomass concentrations, the water quality of filtrate, the aeration cleaning time and the cleaning effect were investigated. Depending on the MLSS concentrations, the different time to withdraw 3L of filtrate was required in which the longer filtration time was necessary for the higher MLSS concentrations caused by the thicker formation of cake layer: 40 minutes for 5,000 mg/L, 70 minutes for 10,000 mg/L and 100 minutes for 15,000 mg/L, where the concentrations of SS were 8.9, 6.7 and 6.5 mg/L, respectively. Under the same operating conditions (the intensity of aeration cleaning: 80 L/min, MLSS: 10,000 mg/L), the proper aeration cleaning time was revealed 30 seconds, and the stable formation of cake layer was in the range of 10 to 15 minutes. Therefore, the shadow mask considered as a waste material can be of use as a filter material for the sludge thickening system.

Oxygen Transfer in Animal Cell Culture by Using a Silicone Tube as an Oxygenator (실리콘 튜브를 이용한 동물세포 배양장치의 산소전달)

  • 정흥채;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.445-450
    • /
    • 1992
  • An enhancement of the oxygen transfer rate in a 1$\ell$ bioreactor for mammalian cell culture by using a silicone rubber tubing as an oxygenator was investigated. When the silicone membrane was used to supply oxygen to the culture broth, the oxygen transfer coefficients ($k_{\iota}a$) measured in deionized-distilled water were markedly increased. Effect of surface aeration without the tubing aeration was very low under $1.0hr^{-1}$ of $k_{\iota}a$. The enhancing effects of agitation rates on $k_{\iota}a$ were much more effective than those of aeration rates. The increase of $k_{\iota}a$ with increasing tube length was observed as a result of the large surface area for oxygen supply. However, 2 m of the tube length was adequate for a 1$\ell$ vessel. The larger blade type of impeller was effective to enhance the kLa values because of its high mixing intensity. In culture medium supplemented with 5% serum, kLa values were reduced to approximately 40% probably due to the viscosity. We also obtained the normal cell concentration of $5{\times}10^6$ cells/m$\ell$ of HepG2 on microcarriers, which could be achieved in a typical bioreactor for animal cell culture.

  • PDF

Effects of Soil Environment on Symbiotic Activities of Arbuscular Mycorrhizal Fungi(AMF) in the Coastal Reclaimed Lands (Arbuscular Mycorrhizal Fungi(AMF)의 공생활성에 미치는 해안 간척지 토양환경의 영향)

  • Koh, Sung-Duk
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.562-573
    • /
    • 1998
  • The symbiotic activities of arbuscular mycorrhizal fungi (AMF) by analyzing spore density, symbiosis intensity and vertical distribution of AMF spores, phytomasses of higher plants such as Calamagrostis epigeios, Imperata cylindrica, Artemisia scoparia, Aster tripolium and Sonchus brachyotus, and physico-chemical properties of soil were determined in the rhizospheres of higher plants in abandoned two coastal reclaimed lands, which were constructed in 12 and 30 years ago, respectively. Vertical distribution of the AMF spores in the rhizospheres of higher plants was restricted within 20 cm depth from soil surface, which would be closely related with vertical distribution of root system, water table and soil aeration. Of vertical distribution of soil properties, W.C., A-P and K concentrations were increased as soil depth was lowered. In the coastal reclaimed lands, symbiotic activities of the AMF such as spore density and symbiotic intensity, were conspicuously stimulated by the increase of soil pH value, organic matter and total nitrogen concentrations, but inhibited by the increase of moisture, available phosphorus and sodium concentrations in the rhizosphere soil. Phosphorus absorption by higher plants growing in the reclaimed lands increased by the rise of symbiotic activities of AMF. Since symbiotic activities of AMF were stimulated with decreasing soil phosphorus concentrations, higher plants associated with AMF absorbed a large amount of phosphorus from the soil is low phosphorus concentrations.

  • PDF

Effect of light, ultrasonication and liquid smoke on germination of proso millet (Panicum miliaceum L.) seeds

  • Kim, Min Geun;Kim, Young Ae;Jung, Ki-Yeul;Kim, Du Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.213-213
    • /
    • 2017
  • High quality seed of proso millet that has high germination percentage, germination speed, and uniformity demanded to increases rates of mechanization in cereal crop cultivation. In order to improve germination characteristics, proso millet seeds were treated with red light, ultrasonication and liquid smoke (LS) solution that generated from hickory wood. All treatments were performed in seed priming solution with 100mM $NH_4NO_3$ at $15^{\circ}C$ for 24hrs under aeration condition. Seeds were exposed under light intensity of 2000 lux for 15m, 30m, 60m, and 120m in priming solution. Ultrasonic treatment was performed at 60%, 80%, and 100% intensity of 21.6 KHz for 5m, 10m, and 20m in priming solution. For LS treatment seed were soaked in 0%, 0.5%, 1.0%, 5.0% and 10.0% of diluted solution with $dH_2O$ or 100mM $NH_4NO_3$ solution. The effect of seed treatment was evaluated with germination percentage (GP), mean germination time (MGT), germination index (GI), germination rate (GR), Germination uniformity (GU) and heath seed percentage (HS). Our results demonstrate that red light (15min) or ultrasonication (21.6kHz, 5min) treatment improved MGT, GI, GR, and GU comparing to untreated control. Importantly, we show that LS treatments have significant effect on the health seedling and germination characteristics. Proso millet seeds that treated with 5% LS solution for 24hrs improves HS up to 97% that similar results obtained in 100mM $NH_4NO_3$ priming for 24hrs. The combined treatment with LS solution and 100mM $NH_4NO_3$ priming were not effective in all treatments. Our results demonstrate that treating seeds with LS or 100mM $NH_4NO_3$ priming or ultrasonication improves germination characteristics. The methods described here will help advance research using this species by increasing the germination performance at which successive seed pellet process.

  • PDF

Design, fabrication, and performance analysis of a twisted hollow fibre membrane module configuration

  • Palmarin, Matthew J.;Young, Stephanie;Lee, Tsun Ho
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • The compact structure and high-quality effluent of membrane bioreactors make them well-suited for decentralized greywater reclamation. However, the occurrence of membrane fouling continues to limit their effectiveness. To address this concern, a unique membrane module configuration was developed for use in a decentralized greywater treatment system. The module featured local aeration directly below a series of inclined membrane bundles, giving the overall module a twisted appearance compared to a module with vertically orientated fibres. The intent of this design was to increase the frequency and intensity of collisions between rising air bubbles and the membrane surface. Material related to the construction of custom-fit modules is rarely communicated. Therefore, detailed design and assembly procedures were provided in this paper. The twisted module was compared to two commercially available modules with diverse specifications in order to assess the relative performance and marketability of the twisted module with respect to existing products. Contaminant removal efficiencies were determined in terms of biochemical oxygen demand, chemical oxygen demand, ammonia, total nitrogen, total phosphorus, and turbidity for each module. Membrane fouling was monitored in terms of permeate flux, transmembrane pressure, and membrane resistance. Following 168 h of operation, the twisted module configuration demonstrated competitive performance, indicating good potential for further development and commercialization.