• Title/Summary/Keyword: Adversarial training

Search Result 113, Processing Time 0.026 seconds

Network Anomaly Traffic Detection Using WGAN-CNN-BiLSTM in Big Data Cloud-Edge Collaborative Computing Environment

  • Yue Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.375-390
    • /
    • 2024
  • Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.

GENERATION OF FUTURE MAGNETOGRAMS FROM PREVIOUS SDO/HMI DATA USING DEEP LEARNING

  • Jeon, Seonggyeong;Moon, Yong-Jae;Park, Eunsu;Shin, Kyungin;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.82.3-82.3
    • /
    • 2019
  • In this study, we generate future full disk magnetograms in 12, 24, 36 and 48 hours advance from SDO/HMI images using deep learning. To perform this generation, we apply the convolutional generative adversarial network (cGAN) algorithm to a series of SDO/HMI magnetograms. We use SDO/HMI data from 2011 to 2016 for training four models. The models make AI-generated images for 2017 HMI data and compare them with the actual HMI magnetograms for evaluation. The AI-generated images by each model are very similar to the actual images. The average correlation coefficient between the two images for about 600 data sets are about 0.85 for four models. We are examining hundreds of active regions for more detail comparison. In the future we will use pix2pix HD and video2video translation networks for image prediction.

  • PDF

Generation of global coronal field extrapolation from frontside and AI-generated farside magnetograms

  • Jeong, Hyunjin;Moon, Yong-Jae;Park, Eunsu;Lee, Harim;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2019
  • Global map of solar surface magnetic field, such as the synoptic map or daily synchronic frame, does not tell us real-time information about the far side of the Sun. A deep-learning technique based on Conditional Generative Adversarial Network (cGAN) is used to generate farside magnetograms from EUVI $304{\AA}$ of STEREO spacecrafts by training SDO spacecraft's data pairs of HMI and AIA $304{\AA}$. Farside(or backside) data of daily synchronic frames are replaced by the Ai-generated magnetograms. The new type of data is used to calculate the Potential Field Source Surface (PFSS) model. We compare the results of the global field with observations as well as those of the conventional method. We will discuss advantage and disadvantage of the new method and future works.

  • PDF

Design of Image Generation System for DCGAN-Based Kids' Book Text

  • Cho, Jaehyeon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1437-1446
    • /
    • 2020
  • For the last few years, smart devices have begun to occupy an essential place in the life of children, by allowing them to access a variety of language activities and books. Various studies are being conducted on using smart devices for education. Our study extracts images and texts from kids' book with smart devices and matches the extracted images and texts to create new images that are not represented in these books. The proposed system will enable the use of smart devices as educational media for children. A deep convolutional generative adversarial network (DCGAN) is used for generating a new image. Three steps are involved in training DCGAN. Firstly, images with 11 titles and 1,164 images on ImageNet are learned. Secondly, Tesseract, an optical character recognition engine, is used to extract images and text from kids' book and classify the text using a morpheme analyzer. Thirdly, the classified word class is matched with the latent vector of the image. The learned DCGAN creates an image associated with the text.

A multi-label Classification of Attributes on Face Images

  • Le, Giang H.;Lee, Yeejin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.105-108
    • /
    • 2021
  • Generative adversarial networks (GANs) have reached a great result at creating the synthesis image, especially in the face generation task. Unlike other deep learning tasks, the input of GANs is usually the random vector sampled by a probability distribution, which leads to unstable training and unpredictable output. One way to solve those problems is to employ the label condition in both the generator and discriminator. CelebA and FFHQ are the two most famous datasets for face image generation. While CelebA contains attribute annotations for more than 200,000 images, FFHQ does not have attribute annotations. Thus, in this work, we introduce a method to learn the attributes from CelebA then predict both soft and hard labels for FFHQ. The evaluated result from our model achieves 0.7611 points of the metric is the area under the receiver operating characteristic curve.

  • PDF

Adversarial Training for Grammatical Error Correction (문법 오류 교정을 위한 적대적 학습 방법)

  • Kwon, Soonchoul;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.446-449
    • /
    • 2020
  • 최근 성공적인 문법 오류 교정 연구들에는 복잡한 인공신경망 모델이 사용되고 있다. 그러나 이러한 모델을 훈련할 수 있는 공개 데이터는 필요에 비해 부족하여 과적합 문제를 일으킨다. 이 논문에서는 적대적 훈련 방법을 적용해 문법 오류 교정 분야의 과적합 문제를 해결하는 방법을 탐색한다. 모델의 비용을 증가시키는 경사를 이용한 fast gradient sign method(FGSM)와, 인공신경망을 이용해 모델의 비용을 증가시키기 위한 변동을 학습하는 learned perturbation method(LPM)가 실험되었다. 실험 결과, LPM은 모델 훈련에 효과가 없었으나, FGSM은 적대적 훈련을 사용하지 않은 모델보다 높은 F0.5 성능을 보이는 것이 확인되었다.

  • PDF

Adversarial Training Method for Handling Class Imbalance Problems in Dialog Datasets (대화 데이터셋의 클래스 불균형 문제 보정을 위한 적대적 학습 기법)

  • Cho, Su-Phil;Choi, Yong Suk
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.434-439
    • /
    • 2019
  • 딥러닝 기반 분류 모델에 있어 데이터의 클래스 불균형 문제는 소수 클래스의 분류 성능을 크게 저하시킨다. 본 논문에서는 앞서 언급한 클래스 불균형 문제를 보완하기 위한 방안으로 적대적 학습 기법을 제안한다. 적대적 학습 기법의 성능 향상 여부를 확인하기 위해 총 4종의 딥러닝 기반 분류 모델을 정의하였으며, 해당 모델 간 분류 성능을 비교하였다. 실험 결과, 대화 데이터셋을 이용한 모델 학습 시 적대적 학습 기법을 적용할 경우 다수 클래스의 분류 성능은 유지하면서 동시에 소수 클래스의 분류 성능을 크게 향상시킬 수 있음을 확인하였다.

  • PDF

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.

Diagnosis of Scoliosis Using Chest Radiographs with a Semi-Supervised Generative Adversarial Network (준지도학습 방법을 이용한 흉부 X선 사진에서 척추측만증의 진단)

  • Woojin Lee;Keewon Shin;Junsoo Lee;Seung-Jin Yoo;Min A Yoon;Yo Won Choi;Gil-Sun Hong;Namkug Kim;Sanghyun Paik
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1298-1311
    • /
    • 2022
  • Purpose To develop and validate a deep learning-based screening tool for the early diagnosis of scoliosis using chest radiographs with a semi-supervised generative adversarial network (GAN). Materials and Methods Using a semi-supervised learning framework with a GAN, a screening tool for diagnosing scoliosis was developed and validated through the chest PA radiographs of patients at two different tertiary hospitals. Our proposed method used training GAN with mild to severe scoliosis only in a semi-supervised manner, as an upstream task to learn scoliosis representations and a downstream task to perform simple classification for differentiating between normal and scoliosis states sensitively. Results The area under the receiver operating characteristic curve, negative predictive value (NPV), positive predictive value, sensitivity, and specificity were 0.856, 0.950, 0.579, 0.985, and 0.285, respectively. Conclusion Our deep learning-based artificial intelligence software in a semi-supervised manner achieved excellent performance in diagnosing scoliosis using the chest PA radiographs of young individuals; thus, it could be used as a screening tool with high NPV and sensitivity and reduce the burden on radiologists for diagnosing scoliosis through health screening chest radiographs.

Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure (토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식)

  • Pyeong-Gon Jung;Young-Il Lim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.123-141
    • /
    • 2023
  • A sufficient amount of data with quality is needed for training artificial neural networks (ANNs). However, developing ANN models with a small amount of data often appears in engineering fields. This paper presented an ANN model to improve prediction performance of the ammonia emission amount with 83 data. The ammonia emission rate included eleven inputs and two outputs (maximum ammonia loss, Nmax and time to reach half of Nmax, Km). Categorical input variables were transformed into multi-dimensional equal-distance variables, and 13 data were added into 66 training data using a generative adversarial network. Hyperparameters (number of layers, number of neurons, and activation function) of ANN were optimized using Gaussian process. Using 17 test data, the previous ANN model (Lim et al., 2007) showed the mean absolute error (MAE) of Km and Nmax to 0.0668 and 0.1860, respectively. The present ANN outperformed the previous model, reducing MAE by 38% and 56%.