• Title/Summary/Keyword: Adversarial training

Search Result 113, Processing Time 0.03 seconds

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.

CNN-Based Fake Image Identification with Improved Generalization (일반화 능력이 향상된 CNN 기반 위조 영상 식별)

  • Lee, Jeonghan;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1624-1631
    • /
    • 2021
  • With the continued development of image processing technology, we live in a time when it is difficult to visually discriminate processed (or tampered) images from real images. However, as the risk of fake images being misused for crime increases, the importance of image forensic science for identifying fake images is emerging. Currently, various deep learning-based identifiers have been studied, but there are still many problems to be used in real situations. Due to the inherent characteristics of deep learning that strongly relies on given training data, it is very vulnerable to evaluating data that has never been viewed. Therefore, we try to find a way to improve generalization ability of deep learning-based fake image identifiers. First, images with various contents were added to the training dataset to resolve the over-fitting problem that the identifier can only classify real and fake images with specific contents but fails for those with other contents. Next, color spaces other than RGB were exploited. That is, fake image identification was attempted on color spaces not considered when creating fake images, such as HSV and YCbCr. Finally, dropout, which is commonly used for generalization of neural networks, was used. Through experimental results, it has been confirmed that the color space conversion to HSV is the best solution and its combination with the approach of increasing the training dataset significantly can greatly improve the accuracy and generalization ability of deep learning-based identifiers in identifying fake images that have never been seen before.

Data Augmentation Effect of StyleGAN-Generated Images in Deep Neural Network Training for Medical Image Classification (의료영상 분류를 위한 심층신경망 훈련에서 StyleGAN 합성 영상의 데이터 증강 효과 분석)

  • Hansang Lee;Arha Woo;Helen Hong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.4
    • /
    • pp.19-29
    • /
    • 2024
  • In this paper, we examine the effectiveness of StyleGAN-generated images for data augmentation in training deep neural networks for medical image classification. We apply StyleGAN data augmentation to train VGG-16 networks for pneumonia diagnosis from chest X-ray images and focal liver lesion classification from abdominal CT images. Through quantitative and qualitative analyses, our experiments reveal that StyleGAN data augmentation expands the outer class boundaries in the feature space. Thanks to this expansion characteristics, the StyleGAN data augmentation can enhance classification performance when properly combined with real training images.

Development of an Actor-Critic Deep Reinforcement Learning Platform for Robotic Grasping in Real World (현실 세계에서의 로봇 파지 작업을 위한 정책/가치 심층 강화학습 플랫폼 개발)

  • Kim, Taewon;Park, Yeseong;Kim, Jong Bok;Park, Youngbin;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.197-204
    • /
    • 2020
  • In this paper, we present a learning platform for robotic grasping in real world, in which actor-critic deep reinforcement learning is employed to directly learn the grasping skill from raw image pixels and rarely observed rewards. This is a challenging task because existing algorithms based on deep reinforcement learning require an extensive number of training data or massive computational cost so that they cannot be affordable in real world settings. To address this problems, the proposed learning platform basically consists of two training phases; a learning phase in simulator and subsequent learning in real world. Here, main processing blocks in the platform are extraction of latent vector based on state representation learning and disentanglement of a raw image, generation of adapted synthetic image using generative adversarial networks, and object detection and arm segmentation for the disentanglement. We demonstrate the effectiveness of this approach in a real environment.

A Study on the Image Preprosessing model linkage method for usability of Pix2Pix (Pix2Pix의 활용성을 위한 학습이미지 전처리 모델연계방안 연구)

  • Kim, Hyo-Kwan;Hwang, Won-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.380-386
    • /
    • 2022
  • This paper proposes a method for structuring the preprocessing process of a training image when color is applied using Pix2Pix, one of the adversarial generative neural network techniques. This paper concentrate on the prediction result can be damaged according to the degree of light reflection of the training image. Therefore, image preprocesisng and parameters for model optimization were configured before model application. In order to increase the image resolution of training and prediction results, it is necessary to modify the of the model so this part is designed to be tuned with parameters. In addition, in this paper, the logic that processes only the part where the prediction result is damaged by light reflection is configured together, and the pre-processing logic that does not distort the prediction result is also configured.Therefore, in order to improve the usability, the accuracy was improved through experiments on the part that applies the light reflection tuning filter to the training image of the Pix2Pix model and the parameter configuration.

Deep-learning based SAR Ship Detection with Generative Data Augmentation (영상 생성적 데이터 증강을 이용한 딥러닝 기반 SAR 영상 선박 탐지)

  • Kwon, Hyeongjun;Jeong, Somi;Kim, SungTai;Lee, Jaeseok;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Ship detection in synthetic aperture radar (SAR) images is an important application in marine monitoring for the military and civilian domains. Over the past decade, object detection has achieved significant progress with the development of convolutional neural networks (CNNs) and lot of labeled databases. However, due to difficulty in collecting and labeling SAR images, it is still a challenging task to solve SAR ship detection CNNs. To overcome the problem, some methods have employed conventional data augmentation techniques such as flipping, cropping, and affine transformation, but it is insufficient to achieve robust performance to handle a wide variety of types of ships. In this paper, we present a novel and effective approach for deep SAR ship detection, that exploits label-rich Electro-Optical (EO) images. The proposed method consists of two components: a data augmentation network and a ship detection network. First, we train the data augmentation network based on conditional generative adversarial network (cGAN), which aims to generate additional SAR images from EO images. Since it is trained using unpaired EO and SAR images, we impose the cycle-consistency loss to preserve the structural information while translating the characteristics of the images. After training the data augmentation network, we leverage the augmented dataset constituted with real and translated SAR images to train the ship detection network. The experimental results include qualitative evaluation of the translated SAR images and the comparison of detection performance of the networks, trained with non-augmented and augmented dataset, which demonstrates the effectiveness of the proposed framework.

A Study on the implementation of the drape generation model using textile drape image (섬유 드레이프 이미지를 활용한 드레이프 생성 모델 구현에 관한 연구)

  • Son, Jae Ik;Kim, Dong Hyun;Choi, Yun Sung
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Drape is one of the factors that determine the shape of clothes and is one of the very important factors in the textile and fashion industry. At a time when non-face-to-face transactions are being activated due to the impact of the coronavirus, more and more companies are asking for drape value. However, in the case of small and medium-sized enterprises (SMEs), it is difficult to measure the drape, because they feel the burden of time and money for measuring the drape. Therefore, this study aimed to generate a drape image for the material property value input using a conditional adversarial neural network through 3D simulation images generated by measuring digital properties. A drape image was created through the existing 736 digital property values, and this was used for model training. Then, the drape value was calculated for the image samples obtained through the generative model. As a result of comparing the actual drape experimental value and the generated drape value, it was confirmed that the error of the peak number was 0.75, and the average error of the drape value was 7.875

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

A New Image Processing Scheme For Face Swapping Using CycleGAN (순환 적대적 생성 신경망을 이용한 안면 교체를 위한 새로운 이미지 처리 기법)

  • Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1305-1311
    • /
    • 2022
  • With the recent rapid development of mobile terminals and personal computers and the advent of neural network technology, real-time face swapping using images has become possible. In particular, the cycle generative adversarial network made it possible to replace faces using uncorrelated image data. In this paper, we propose an input data processing scheme that can improve the quality of face swapping with less training data and time. The proposed scheme can improve the image quality while preserving facial structure and expression information by combining facial landmarks extracted through a pre-trained neural network with major information that affects the structure and expression of the face. Using the blind/referenceless image spatial quality evaluator (BRISQUE) score, which is one of the AI-based non-reference quality metrics, we quantitatively analyze the performance of the proposed scheme and compare it to the conventional schemes. According to the numerical results, the proposed scheme obtained BRISQUE scores improved by about 4.6% to 14.6%, compared to the conventional schemes.

Synthesis of T2-weighted images from proton density images using a generative adversarial network in a temporomandibular joint magnetic resonance imaging protocol

  • Chena, Lee;Eun-Gyu, Ha;Yoon Joo, Choi;Kug Jin, Jeon;Sang-Sun, Han
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.393-398
    • /
    • 2022
  • Purpose: This study proposed a generative adversarial network (GAN) model for T2-weighted image (WI) synthesis from proton density (PD)-WI in a temporomandibular joint(TMJ) magnetic resonance imaging (MRI) protocol. Materials and Methods: From January to November 2019, MRI scans for TMJ were reviewed and 308 imaging sets were collected. For training, 277 pairs of PD- and T2-WI sagittal TMJ images were used. Transfer learning of the pix2pix GAN model was utilized to generate T2-WI from PD-WI. Model performance was evaluated with the structural similarity index map (SSIM) and peak signal-to-noise ratio (PSNR) indices for 31 predicted T2-WI (pT2). The disc position was clinically diagnosed as anterior disc displacement with or without reduction, and joint effusion as present or absent. The true T2-WI-based diagnosis was regarded as the gold standard, to which pT2-based diagnoses were compared using Cohen's ĸ coefficient. Results: The mean SSIM and PSNR values were 0.4781(±0.0522) and 21.30(±1.51) dB, respectively. The pT2 protocol showed almost perfect agreement(ĸ=0.81) with the gold standard for disc position. The number of discordant cases was higher for normal disc position (17%) than for anterior displacement with reduction (2%) or without reduction (10%). The effusion diagnosis also showed almost perfect agreement(ĸ=0.88), with higher concordance for the presence (85%) than for the absence (77%) of effusion. Conclusion: The application of pT2 images for a TMJ MRI protocol useful for diagnosis, although the image quality of pT2 was not fully satisfactory. Further research is expected to enhance pT2 quality.