• Title/Summary/Keyword: Adversarial training

Search Result 113, Processing Time 0.024 seconds

Depth Image Restoration Using Generative Adversarial Network (Generative Adversarial Network를 이용한 손실된 깊이 영상 복원)

  • Nah, John Junyeop;Sim, Chang Hun;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.614-621
    • /
    • 2018
  • This paper proposes a method of restoring corrupted depth image captured by depth camera through unsupervised learning using generative adversarial network (GAN). The proposed method generates restored face depth images using 3D morphable model convolutional neural network (3DMM CNN) with large-scale CelebFaces Attribute (CelebA) and FaceWarehouse dataset for training deep convolutional generative adversarial network (DCGAN). The generator and discriminator equip with Wasserstein distance for loss function by utilizing minimax game. Then the DCGAN restore the loss of captured facial depth images by performing another learning procedure using trained generator and new loss function.

Deep Adversarial Residual Convolutional Neural Network for Image Generation and Classification

  • Haque, Md Foysal;Kang, Dae-Seong
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • Generative adversarial networks (GANs) achieved impressive performance on image generation and visual classification applications. However, adversarial networks meet difficulties in combining the generative model and unstable training process. To overcome the problem, we combined the deep residual network with upsampling convolutional layers to construct the generative network. Moreover, the study shows that image generation and classification performance become more prominent when the residual layers include on the generator. The proposed network empirically shows that the ability to generate images with higher visual accuracy provided certain amounts of additional complexity using proper regularization techniques. Experimental evaluation shows that the proposed method is superior to image generation and classification tasks.

Improving Adversarial Domain Adaptation with Mixup Regularization

  • Bayarchimeg Kalina;Youngbok Cho
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.139-144
    • /
    • 2023
  • Engineers prefer deep neural networks (DNNs) for solving computer vision problems. However, DNNs pose two major problems. First, neural networks require large amounts of well-labeled data for training. Second, the covariate shift problem is common in computer vision problems. Domain adaptation has been proposed to mitigate this problem. Recent work on adversarial-learning-based unsupervised domain adaptation (UDA) has explained transferability and enabled the model to learn robust features. Despite this advantage, current methods do not guarantee the distinguishability of the latent space unless they consider class-aware information of the target domain. Furthermore, source and target examples alone cannot efficiently extract domain-invariant features from the encoded spaces. To alleviate the problems of existing UDA methods, we propose the mixup regularization in adversarial discriminative domain adaptation (ADDA) method. We validated the effectiveness and generality of the proposed method by performing experiments under three adaptation scenarios: MNIST to USPS, SVHN to MNIST, and MNIST to MNIST-M.

Imbalanced sample fault diagnosis method for rotating machinery in nuclear power plants based on deep convolutional conditional generative adversarial network

  • Zhichao Wang;Hong Xia;Jiyu Zhang;Bo Yang;Wenzhe Yin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2096-2106
    • /
    • 2023
  • Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-driven fault diagnosis faces the problem of small and imbalanced samples, resulting in low model training efficiency and poor generalization performance. Therefore, a deep convolutional conditional generative adversarial network (DCCGAN) is constructed to mitigate the impact of imbalanced samples on fault diagnosis. First, a conditional generative adversarial model is designed based on convolutional neural networks to effectively augment imbalanced samples. The original sample features can be effectively extracted by the model based on conditional generative adversarial strategy and appropriate number of filters. In addition, high-quality generated samples are ensured through the visualization of model training process and samples features. Then, a deep convolutional neural network (DCNN) is designed to extract features of mixed samples and implement intelligent fault diagnosis. Finally, based on multi-fault experimental data of motor and bearing, the performance of DCCGAN model for data augmentation and intelligent fault diagnosis is verified. The proposed method effectively alleviates the problem of imbalanced samples, and shows its application value in intelligent fault diagnosis of actual NPPs.

Study on the White Noise effect Against Adversarial Attack for Deep Learning Model for Image Recognition (영상 인식을 위한 딥러닝 모델의 적대적 공격에 대한 백색 잡음 효과에 관한 연구)

  • Lee, Youngseok;Kim, Jongweon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.27-35
    • /
    • 2022
  • In this paper we propose white noise adding method to prevent missclassification of deep learning system by adversarial attacks. The proposed method is that adding white noise to input image that is benign or adversarial example. The experimental results are showing that the proposed method is robustness to 3 adversarial attacks such as FGSM attack, BIN attack and CW attack. The recognition accuracies of Resnet model with 18, 34, 50 and 101 layers are enhanced when white noise is added to test data set while it does not affect to classification of benign test dataset. The proposed model is applicable to defense to adversarial attacks and replace to time- consuming and high expensive defense method against adversarial attacks such as adversarial training method and deep learning replacing method.

Adversarial Machine Learning: A Survey on the Influence Axis

  • Alzahrani, Shahad;Almalki, Taghreed;Alsuwat, Hatim;Alsuwat, Emad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.193-203
    • /
    • 2022
  • After the everyday use of systems and applications of artificial intelligence in our world. Consequently, machine learning technologies have become characterized by exceptional capabilities and unique and distinguished performance in many areas. However, these applications and systems are vulnerable to adversaries who can be a reason to confer the wrong classification by introducing distorted samples. Precisely, it has been perceived that adversarial examples designed throughout the training and test phases can include industrious Ruin the performance of the machine learning. This paper provides a comprehensive review of the recent research on adversarial machine learning. It's also worth noting that the paper only examines recent techniques that were released between 2018 and 2021. The diverse systems models have been investigated and discussed regarding the type of attacks, and some possible security suggestions for these attacks to highlight the risks of adversarial machine learning.

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

Effective Analsis of GAN based Fake Date for the Deep Learning Model (딥러닝 훈련을 위한 GAN 기반 거짓 영상 분석효과에 대한 연구)

  • Seungmin, Jang;Seungwoo, Son;Bongsuck, Kim
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.137-141
    • /
    • 2022
  • To inspect the power facility faults using artificial intelligence, it need that improve the accuracy of the diagnostic model are required. Data augmentation skill using generative adversarial network (GAN) is one of the best ways to improve deep learning performance. GAN model can create realistic-looking fake images using two competitive learning networks such as discriminator and generator. In this study, we intend to verify the effectiveness of virtual data generation technology by including the fake image of power facility generated through GAN in the deep learning training set. The GAN-based fake image was created for damage of LP insulator, and ResNet based normal and defect classification model was developed to verify the effect. Through this, we analyzed the model accuracy according to the ratio of normal and defective training data.

Enhancing Gene Expression Classification of Support Vector Machines with Generative Adversarial Networks

  • Huynh, Phuoc-Hai;Nguyen, Van Hoa;Do, Thanh-Nghi
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.14-20
    • /
    • 2019
  • Currently, microarray gene expression data take advantage of the sufficient classification of cancers, which addresses the problems relating to cancer causes and treatment regimens. However, the sample size of gene expression data is often restricted, because the price of microarray technology on studies in humans is high. We propose enhancing the gene expression classification of support vector machines with generative adversarial networks (GAN-SVMs). A GAN that generates new data from original training datasets was implemented. The GAN was used in conjunction with nonlinear SVMs that efficiently classify gene expression data. Numerical test results on 20 low-sample-size and very high-dimensional microarray gene expression datasets from the Kent Ridge Biomedical and Array Expression repositories indicate that the model is more accurate than state-of-the-art classifying models.