• Title/Summary/Keyword: Adversarial training

Search Result 113, Processing Time 0.024 seconds

Adversarial-Mixup: Increasing Robustness to Out-of-Distribution Data and Reliability of Inference (적대적 데이터 혼합: 분포 외 데이터에 대한 강건성과 추론 결과에 대한 신뢰성 향상 방법)

  • Gwon, Kyungpil;Yo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Detecting Out-of-Distribution (OOD) data is fundamentally required when Deep Neural Network (DNN) is applied to real-world AI such as autonomous driving. However, modern DNNs are quite vulnerable to the over-confidence problem even if the test data are far away from the trained data distribution. To solve the problem, this paper proposes a novel Adversarial-Mixup training method to let the DNN model be more robust by detecting OOD data effectively. Experimental results show that the proposed Adversarial-Mixup method improves the overall performance of OOD detection by 78% comparing with the State-of-the-Art methods. Furthermore, we show that the proposed method can alleviate the over-confidence problem by reducing the confidence score of OOD data than the previous methods, resulting in more reliable and robust DNNs.

Adversarial Detection with Gaussian Process Regression-based Detector

  • Lee, Sangheon;Kim, Noo-ri;Cho, Youngwha;Choi, Jae-Young;Kim, Suntae;Kim, Jeong-Ah;Lee, Jee-Hyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4285-4299
    • /
    • 2019
  • Adversarial attack is a technique that causes a malfunction of classification models by adding noise that cannot be distinguished by humans, which poses a threat to a deep learning model. In this paper, we propose an efficient method to detect adversarial images using Gaussian process regression. Existing deep learning-based adversarial detection methods require numerous adversarial images for their training. The proposed method overcomes this problem by performing classification based on the statistical features of adversarial images and clean images that are extracted by Gaussian process regression with a small number of images. This technique can determine whether the input image is an adversarial image by applying Gaussian process regression based on the intermediate output value of the classification model. Experimental results show that the proposed method achieves higher detection performance than the other deep learning-based adversarial detection methods for powerful attacks. In particular, the Gaussian process regression-based detector shows better detection performance than the baseline models for most attacks in the case with fewer adversarial examples.

A Protein-Protein Interaction Extraction Approach Based on Large Pre-trained Language Model and Adversarial Training

  • Tang, Zhan;Guo, Xuchao;Bai, Zhao;Diao, Lei;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.771-791
    • /
    • 2022
  • Protein-protein interaction (PPI) extraction from original text is important for revealing the molecular mechanism of biological processes. With the rapid growth of biomedical literature, manually extracting PPI has become more time-consuming and laborious. Therefore, the automatic PPI extraction from the raw literature through natural language processing technology has attracted the attention of the majority of researchers. We propose a PPI extraction model based on the large pre-trained language model and adversarial training. It enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, which are built on large-scale domain corpora, and adversarial perturbations are applied to the embedding layer to improve the robustness of the model. Experimental results showed that the proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous method. It also achieved comparable performance on three corpora with small sample sizes, namely, HPRD50, IEPA, and LLL.

Technique Proposal to Stabilize Lipschitz Continuity of WGAN Based on Regularization Terms (정칙화 항에 기반한 WGAN의 립쉬츠 연속 안정화 기법 제안)

  • Hahn, Hee-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.239-246
    • /
    • 2020
  • The recently proposed Wasserstein generative adversarial network (WGAN) has improved some of the tricky and unstable training processes that are chronic problems of the generative adversarial network(GAN), but there are still cases where it generates poor samples or fails to converge. In order to solve the problems, this paper proposes algorithms to improve the sampling process so that the discriminator can more accurately estimate the data probability distribution to be modeled and to stably maintain the discriminator should be Lipschitz continuous. Through various experiments, we analyze the characteristics of the proposed techniques and verify their performances.

Morpho-GAN: Unsupervised Learning of Data with High Morphology using Generative Adversarial Networks (Morpho-GAN: Generative Adversarial Networks를 사용하여 높은 형태론 데이터에 대한 비지도학습)

  • Abduazimov, Azamat;Jo, GeunSik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.11-14
    • /
    • 2020
  • The importance of data in the development of deep learning is very high. Data with high morphological features are usually utilized in the domains where careful lens calibrations are needed by a human to capture those data. Synthesis of high morphological data for that domain can be a great asset to improve the classification accuracy of systems in the field. Unsupervised learning can be employed for this task. Generating photo-realistic objects of interest has been massively studied after Generative Adversarial Network (GAN) was introduced. In this paper, we propose Morpho-GAN, a method that unifies several GAN techniques to generate quality data of high morphology. Our method introduces a new suitable training objective in the discriminator of GAN to synthesize images that follow the distribution of the original dataset. The results demonstrate that the proposed method can generate plausible data as good as other modern baseline models while taking a less complex during training.

  • PDF

Constrained adversarial loss for generative adversarial network-based faithful image restoration

  • Kim, Dong-Wook;Chung, Jae-Ryun;Kim, Jongho;Lee, Dae Yeol;Jeong, Se Yoon;Jung, Seung-Won
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.415-425
    • /
    • 2019
  • Generative adversarial networks (GAN) have been successfully used in many image restoration tasks, including image denoising, super-resolution, and compression artifact reduction. By fully exploiting its characteristics, state-of-the-art image restoration techniques can be used to generate images with photorealistic details. However, there are many applications that require faithful rather than visually appealing image reconstruction, such as medical imaging, surveillance, and video coding. We found that previous GAN-training methods that used a loss function in the form of a weighted sum of fidelity and adversarial loss fails to reduce fidelity loss. This results in non-negligible degradation of the objective image quality, including peak signal-to-noise ratio. Our approach is to alternate between fidelity and adversarial loss in a way that the minimization of adversarial loss does not deteriorate the fidelity. Experimental results on compression-artifact reduction and super-resolution tasks show that the proposed method can perform faithful and photorealistic image restoration.

A Substitute Model Learning Method Using Data Augmentation with a Decay Factor and Adversarial Data Generation Using Substitute Model (감쇠 요소가 적용된 데이터 어그멘테이션을 이용한 대체 모델 학습과 적대적 데이터 생성 방법)

  • Min, Jungki;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1383-1392
    • /
    • 2019
  • Adversarial attack, which geneartes adversarial data to make target model misclassify the input data, is able to confuse real life applications of classification models and cause severe damage to the classification system. An Black-box adversarial attack learns a substitute model, which have similar decision boundary to the target model, and then generates adversarial data with the substitute model. Jacobian-based data augmentation is used to synthesize the training data to learn substitutes, but has a drawback that the data synthesized by the augmentation get distorted more and more as the training loop proceeds. We suggest data augmentation with 'decay factor' to alleviate this problem. The result shows that attack success rate of our method is higher(around 8.5%) than the existing method.

Many-to-many voice conversion experiments using a Korean speech corpus (다수 화자 한국어 음성 변환 실험)

  • Yook, Dongsuk;Seo, HyungJin;Ko, Bonggu;Yoo, In-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.351-358
    • /
    • 2022
  • Recently, Generative Adversarial Networks (GAN) and Variational AutoEncoders (VAE) have been applied to voice conversion that can make use of non-parallel training data. Especially, Conditional Cycle-Consistent Generative Adversarial Networks (CC-GAN) and Cycle-Consistent Variational AutoEncoders (CycleVAE) show promising results in many-to-many voice conversion among multiple speakers. However, the number of speakers has been relatively small in the conventional voice conversion studies using the CC-GANs and the CycleVAEs. In this paper, we extend the number of speakers to 100, and analyze the performances of the many-to-many voice conversion methods experimentally. It has been found through the experiments that the CC-GAN shows 4.5 % less Mel-Cepstral Distortion (MCD) for a small number of speakers, whereas the CycleVAE shows 12.7 % less MCD in a limited training time for a large number of speakers.

Triplet loss based domain adversarial training for robust wake-up word detection in noisy environments (잡음 환경에 강인한 기동어 검출을 위한 삼중항 손실 기반 도메인 적대적 훈련)

  • Lim, Hyungjun;Jung, Myunghun;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.468-475
    • /
    • 2020
  • A good acoustic word embedding that can well express the characteristics of word plays an important role in wake-up word detection (WWD). However, the representation ability of acoustic word embedding may be weakened due to various types of environmental noise occurred in the place where WWD works, causing performance degradation. In this paper, we proposed triplet loss based Domain Adversarial Training (tDAT) mitigating environmental factors that can affect acoustic word embedding. Through experiments in noisy environments, we verified that the proposed method effectively improves the conventional DAT approach, and checked its scalability by combining with other method proposed for robust WWD.

Document Image Binarization by GAN with Unpaired Data Training

  • Dang, Quang-Vinh;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.16 no.2
    • /
    • pp.8-18
    • /
    • 2020
  • Data is critical in deep learning but the scarcity of data often occurs in research, especially in the preparation of the paired training data. In this paper, document image binarization with unpaired data is studied by introducing adversarial learning, excluding the need for supervised or labeled datasets. However, the simple extension of the previous unpaired training to binarization inevitably leads to poor performance compared to paired data training. Thus, a new deep learning approach is proposed by introducing a multi-diversity of higher quality generated images. In this paper, a two-stage model is proposed that comprises the generative adversarial network (GAN) followed by the U-net network. In the first stage, the GAN uses the unpaired image data to create paired image data. With the second stage, the generated paired image data are passed through the U-net network for binarization. Thus, the trained U-net becomes the binarization model during the testing. The proposed model has been evaluated over the publicly available DIBCO dataset and it outperforms other techniques on unpaired training data. The paper shows the potential of using unpaired data for binarization, for the first time in the literature, which can be further improved to replace paired data training for binarization in the future.