• Title/Summary/Keyword: Adversarial training

Search Result 113, Processing Time 0.025 seconds

Challenges to Prevent in Practice for Effective Cost and Time Control of Construction Projects

  • Olawale, Yakubu A.
    • Journal of Construction Engineering and Project Management
    • /
    • v.10 no.1
    • /
    • pp.16-32
    • /
    • 2020
  • Cost and time control of projects is important in preventing project failure. However, achieving effective cost and time control in practice is often challenging. The challenges of project cost and time control in practice are investigated by carrying out a questionnaire survey on the top 150 construction contractors in the UK followed by in-depth semi-structured interviews of practitioners from 15 construction companies in the country. Quantitative analysis reveals that design change is the most important factor inhibiting the ability of UK contractors from effectively controlling both the cost and time of construction projects. Four of the top five factors inhibiting effective cost control are also the top factors inhibiting effective time control albeit in a different order. These top factors-design changes, inaccurate evaluation of project time/duration, risk and uncertainty, non-performance of subcontractors and nominated suppliers were also found to be endogenous factors to the project. Additionally, qualitative analysis of the interviews reveals 16 key challenges to prevent for effective project cost and time control in practice. These are classified into four categorised based on where they stem from as follows; from the organisation (1. Lack of integration of cost and time during project control, 2. lack of management buy-in, 3. complicated project control systems and processes, 4. lack of a project control training regime); from the construction management/project management approach (5. Lapses in integration of interfaces, 6. project control not being implemented from the early stages of a project, 7. inefficient utilisation and control of labour, 8. limited time devoted to planning how a project will be controlled at the outset); from the client; (9. Excessive authorisation gates, 10. use of adversarial and non-collaborative forms of contracts, 11. communication problems within client set-up, 12. obstructive client representatives) and; from the project team (13. Lack of detailed/complete design, 14. lack of trust among the project partners, 15. limited time devoted to project control on site, 16. non-factual reporting). The study posits that knowledge of these project control inhibiting factors and challenges is the first step at ensuring they are avoided and enable the implementation of a more effective project cost and time control process in practice.

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

Analysis of Deep Learning Model Vulnerability According to Input Mutation (입력 변이에 따른 딥러닝 모델 취약점 연구 및 검증)

  • Kim, Jaeuk;Park, Leo Hyun;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • The deep learning model can produce false prediction results due to inputs that deviate from training data through variation, which leads to fatal accidents in areas such as autonomous driving and security. To ensure reliability of the model, the model's coping ability for exceptional situations should be verified through various mutations. However, previous studies were carried out on limited scope of models and used several mutation types without separating them. Based on the CIFAR10 data set, widely used dataset for deep learning verification, this study carries out reliability verification for total of six models including various commercialized models and their additional versions. To this end, six types of input mutation algorithms that may occur in real life are applied individually with their various parameters to the dataset to compare the accuracy of the models for each of them to rigorously identify vulnerabilities of the models associated with a particular mutation type.

Structural health monitoring response reconstruction based on UAGAN under structural condition variations with few-shot learning

  • Jun, Li;Zhengyan, He;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.687-701
    • /
    • 2022
  • Inevitable response loss under complex operational conditions significantly affects the integrity and quality of measured data, leading the structural health monitoring (SHM) ineffective. To remedy the impact of data loss, a common way is to transfer the recorded response of available measure point to where the data loss occurred by establishing the response mapping from measured data. However, the current research has yet addressed the structural condition changes afterward and response mapping learning from a small sample. So, this paper proposes a novel data driven structural response reconstruction method based on a sophisticated designed generating adversarial network (UAGAN). Advanced deep learning techniques including U-shaped dense blocks, self-attention and a customized loss function are specialized and embedded in UAGAN to improve the universal and representative features extraction and generalized responses mapping establishment. In numerical validation, UAGAN efficiently and accurately captures the distinguished features of structural response from only 40 training samples of the intact structure. Besides, the established response mapping is universal, which effectively reconstructs responses of the structure suffered up to 10% random stiffness reduction or structural damage. In the experimental validation, UAGAN is trained with ambient response and applied to reconstruct response measured under earthquake. The reconstruction losses of response in the time and frequency domains reached 16% and 17%, that is better than the previous research, demonstrating the leading performance of the sophisticated designed network. In addition, the identified modal parameters from reconstructed and the corresponding true responses are highly consistent indicates that the proposed UAGAN is very potential to be applied to practical civil engineering.

Challenges of diet planning for children using artificial intelligence

  • Changhun, Lee;Soohyeok, Kim;Jayun, Kim;Chiehyeon, Lim;Minyoung, Jung
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Diet planning in childcare centers is difficult because of the required knowledge of nutrition and development as well as the high design complexity associated with large numbers of food items. Artificial intelligence (AI) is expected to provide diet-planning solutions via automatic and effective application of professional knowledge, addressing the complexity of optimal diet design. This study presents the results of the evaluation of the utility of AI-generated diets for children and provides related implications. MATERIALS/METHODS: We developed 2 AI solutions for children aged 3-5 yrs using a generative adversarial network (GAN) model and a reinforcement learning (RL) framework. After training these solutions to produce daily diet plans, experts evaluated the human- and AI-generated diets in 2 steps. RESULTS: In the evaluation of adequacy of nutrition, where experts were provided only with nutrient information and no food names, the proportion of strong positive responses to RL-generated diets was higher than that of the human- and GAN-generated diets (P < 0.001). In contrast, in terms of diet composition, the experts' responses to human-designed diets were more positive when experts were provided with food name information (i.e., composition information). CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the development and evaluation of AI to support dietary planning for children. This study demonstrates the possibility of developing AI-assisted diet planning methods for children and highlights the importance of composition compliance in diet planning. Further integrative cooperation in the fields of nutrition, engineering, and medicine is needed to improve the suitability of our proposed AI solutions and benefit children's well-being by providing high-quality diet planning in terms of both compositional and nutritional criteria.

Sparse Class Processing Strategy in Image-based Livestock Defect Detection (이미지 기반 축산물 불량 탐지에서의 희소 클래스 처리 전략)

  • Lee, Bumho;Cho, Yesung;Yi, Mun Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1720-1728
    • /
    • 2022
  • The industrial 4.0 era has been opened with the development of artificial intelligence technology, and the realization of smart farms incorporating ICT technology is receiving great attention in the livestock industry. Among them, the quality management technology of livestock products and livestock operations incorporating computer vision-based artificial intelligence technology represent key technologies. However, the insufficient number of livestock image data for artificial intelligence model training and the severely unbalanced ratio of labels for recognizing a specific defective state are major obstacles to the related research and technology development. To overcome these problems, in this study, combining oversampling and adversarial case generation techniques is proposed as a method necessary to effectively utilizing small data labels for successful defect detection. In addition, experiments comparing performance and time cost of the applicable techniques were conducted. Through experiments, we confirm the validity of the proposed methods and draw utilization strategies from the study results.

Generation of He I 1083 nm Images from SDO/AIA 19.3 and 30.4 nm Images by Deep Learning

  • Son, Jihyeon;Cha, Junghun;Moon, Yong-Jae;Lee, Harim;Park, Eunsu;Shin, Gyungin;Jeong, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2021
  • In this study, we generate He I 1083 nm images from Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images using a novel deep learning method (pix2pixHD) based on conditional Generative Adversarial Networks (cGAN). He I 1083 nm images from National Solar Observatory (NSO)/Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used as target data. We make three models: single input SDO/AIA 19.3 nm image for Model I, single input 30.4 nm image for Model II, and double input (19.3 and 30.4 nm) images for Model III. We use data from 2010 October to 2015 July except for June and December for training and the remaining one for test. Major results of our study are as follows. First, the models successfully generate He I 1083 nm images with high correlations. Second, the model with two input images shows better results than those with one input image in terms of metrics such as correlation coefficient (CC) and root mean squared error (RMSE). CC and RMSE between real and AI-generated ones for the model III with 4 by 4 binnings are 0.84 and 11.80, respectively. Third, AI-generated images show well observational features such as active regions, filaments, and coronal holes. This work is meaningful in that our model can produce He I 1083 nm images with higher cadence without data gaps, which would be useful for studying the time evolution of chromosphere and coronal holes.

  • PDF

Convolutional neural network of age-related trends digital radiographs of medial clavicle in a Thai population: a preliminary study

  • Phisamon Kengkard;Jirachaya Choovuthayakorn;Chollada Mahakkanukrauh;Nadee Chitapanarux;Pittayarat Intasuwan;Yanumart Malatong;Apichat Sinthubua;Patison Palee;Sakarat Na Lampang;Pasuk Mahakkanukrauh
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.86-93
    • /
    • 2023
  • Age at death estimation has always been a crucial yet challenging part of identification process in forensic field. The use of human skeletons have long been explored using the principle of macro and micro-architecture change in correlation with increasing age. The clavicle is recommended as the best candidate for accurate age estimation because of its accessibility, time to maturation and minimal effect from weight. Our study applies pre-trained convolutional neural network in order to achieve the most accurate and cost effective age estimation model using clavicular bone. The total of 988 clavicles of Thai population with known age and sex were radiographed using Kodak 9000 Extra-oral Imaging System. The radiographs then went through preprocessing protocol which include region of interest selection and quality assessment. Additional samples were generated using generative adversarial network. The total clavicular images used in this study were 3,999 which were then separated into training and test set, and the test set were subsequently categorized into 7 age groups. GoogLeNet was modified at two layers and fine tuned the parameters. The highest validation accuracy was 89.02% but the test set achieved only 30% accuracy. Our results show that the use of medial clavicular radiographs has a potential in the field of age at death estimation, thus, further study is recommended.

TCN-USAD for Anomaly Power Detection (이상 전력 탐지를 위한 TCN-USAD)

  • Hyeonseok Jin;Kyungbaek Kim
    • Smart Media Journal
    • /
    • v.13 no.7
    • /
    • pp.9-17
    • /
    • 2024
  • Due to the increase in energy consumption, and eco-friendly policies, there is a need for efficient energy consumption in buildings. Anomaly power detection based on deep learning are being used. Because of the difficulty in collecting anomaly data, anomaly detection is performed using reconstruction error with a Recurrent Neural Network(RNN) based autoencoder. However, there are some limitations such as the long time required to fully learn temporal features and its sensitivity to noise in the train data. To overcome these limitations, this paper proposes the TCN-USAD, combined with Temporal Convolution Network(TCN) and UnSupervised Anomaly Detection for multivariate data(USAD). The proposed model using TCN-based autoencoder and the USAD structure, which uses two decoders and adversarial training, to quickly learn temporal features and enable robust anomaly detection. To validate the performance of TCN-USAD, comparative experiments were performed using two building energy datasets. The results showed that the TCN-based autoencoder can perform faster and better reconstruction than RNN-based autoencoder. Furthermore, TCN-USAD achieved 20% improved F1-Score over other anomaly detection models, demonstrating excellent anomaly detection performance.

Automated Terrain Data Generation for Urban Flood Risk Mapping Using c-GAN and BBDM

  • Jonghyuk Lee;Sangik Lee;Byung-hun Seo;Dongsu Kim;Yejin Seo;Dongwoo Kim;Yerim Cho;Won Choi
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1294-1294
    • /
    • 2024
  • Flood risk maps are used in urban flooding to understand the spatial extent and depth of inundation damage. To construct these maps, hydrodynamic modeling capable of simulating flood waves is necessary. Flood waves are typically fast, and inundation patterns can significantly vary depending on the terrain, making it essential to accurately represent the terrain of the flood source in flood wave analysis. Recently, methods using UAVs for terrain data construction through Structure-from-Motion or LiDAR have been utilized. These methods are crucial for UAV operations, and thus, still require a lot of time and manpower, and are limited when UAV operations are not possible. Therefore, for efficient nationwide monitoring, this study developed a model that can automatically generate terrain data by estimating depth information from a single image using c-GAN (Conditional Generative Adversarial Networks) and BBDM (Brownian Bridge Diffusion Model). The training, utilization, and validation datasets employed images from the ISPRS (2018) and directly aerial photographed image sets from five locations in the territory of the Republic of Korea. Compared to the ground truth of the test data set, it is considered sufficiently usable as terrain data for flood wave analysis, capable of generating highly accurate and precise terrain data with high reproducibility.