• Title/Summary/Keyword: Advancing Contact Angle

Search Result 29, Processing Time 0.031 seconds

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

Characterization of Acetylene Plasma-Polymer Films: Recovery of Surface Hydrophobicity by Aging

  • Kim, Jeong-Ho;Kim, Tae-Hyung;Oh, Jung-Geun;Noh, Seok-Hwan;Lee, Jeong-Soo;Park, Kyu-Ho;Ha, Sam-Chul;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2589-2594
    • /
    • 2009
  • Aging phenomena of plasma polymer films were studied by using the surface analysis techniques of contact angle measurement, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), and atomic force microscopy (AFM). The polymer films were grown on an aluminum substrate by using a plasma polymerization method from a gas mixture of acetylene and helium, and the films were subsequently modified to have a hydrophilic surface by oxygen plasma treatment. Aging of the polymer films was examined by exposing the samples to water and air environments. The aging process increased the hydrophobicity of the surface, as revealed by an increase in the advancing contact angle of water. XPS analysis showed that the population of oxygen-containing polar groups increased due to the uptake of oxygen during the aging, whereas TOF-SIMS analysis revealed a decrease in the polar group population in the uppermost surface layer. The results suggest that the change in surface property from hydrophilic to hydrophobic nature results from the restructuring of polymer chains near the surface, rather than compositional change of the surface. Oxidative degradation may enhance the mobility and the restructuring process of polymer chains.

Direct Numerical Analysis of $CO_2$ degassing process in ${\mu}DMFC$ (마이크로 DMFC 에서 $CO_2$ degassing 과정의 직접 수치 해석)

  • Shin, Seung-Won;Shim, Jung-Ik;Wi, Wan-Seok;Jo, Sung-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2648-2653
    • /
    • 2007
  • Recently, increasing demand on not only lighter but also extremely mobile battery make micro fuel cell device very attractive alternative. By reducing the size of fuel cell, surface tension becomes dominant factor with minor gravitational effect. Therefore, it is very difficult to detach the $CO_2$ bubble generating on a cathode side in ${\mu}DMFC$ (micro direct methanol fuel cell). The degassing of a $CO_2$ bubble has drawn quite attention especially for ${\mu}DMFC$ due to its considerable effect on overall machine performance. Our attention has been paid to the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We use Level Contour Reconstruction Method (LCRM) which is simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

  • PDF

Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구)

  • Kim, Jeong-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.

Influence of the Surface Energetics on flotation Process - Importance of the Surface Energy and Polarity of Solid Particles in Flotation Efficiency - (부유부상 공정에 있어서 표면 에너지의 역할 - 부유부상 효율에 있어 고형 입자의 표면 에너지 및 극성성분의 중요성 -)

  • Lee, Hak-Rae;Park, Il;Lee, Yong-Min;Lee, Jin-Hee;Cho, Joong-Yeon;Han, Sin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The object of this study was to determine the surface energy of hydrophobically modified micro-crystalline cellulose (MCC) with AKD and evaluate the effect of surface energy of the solid particles dispersed in aqueous medium on flotation efficiency. Especially to eliminate the complication derives from the diverse parameters of solid particles including particle size, type, etc. MCC's modified with AKD have been used. The surface energy Parameters were calculated from advancing contact angles of apolar and polar liquids on MCC pellets using the Lifshitz-van der Waals acid-base (LW:AB) approach. Total surface energy of hydrophobic MCC ranged from 46.19 mN/m to 48.60 mN/m. The contribution of the acid-base components to the total surface energy ranged form 13% to 17% for hydrophobic MCC's. The effect of surface characteristics on the flotation efficiency was evaluated. It was shown that there exist critical values of surface energies to increase flotation efficiency. Total surface energy and polar component of solid particles should be lower than 47 mN/m and 7 mN/m, respectively, for effective removal in the flotation process.

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Improvement of Interfacial Adhesion of Plasma Treated Single Carbon Fiber Reinforced CNT-Phenolic Nanocomposites by Electrical Resistance Measurement and Wettability (젖음성 및 전기저항 측정을 이용한 플라즈마 처리된 단일 탄소섬유 강화 탄소나노튜브-페놀수지 나노복합재료의 계면접착력 향상)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.12 no.3
    • /
    • pp.88-93
    • /
    • 2011
  • Optimal dispersion and fabrication conditions of carbon nanotube (CNT) embedded in phenolic resin were determined by electrical resistance measurement; and interfacial property was investigated between plasma treated carbon fiber and CNT-phenolic composites by electro-micromechanical techniques. Wettability of carbon fiber was improved significantly after plasma treatment. Surface energies of carbon fiber and CNT-phenolic nanocomposites were measured using Wilhelmy plate technique. Since surface activation of carbon fiber, the advancing contact angle decreased from $65^{\circ}$ to $28^{\circ}$ after plasma treatment. It was consistent with static contact angle results of carbon fiber. Work of adhesion between plasma treated carbon fiber and CNT-phenolic nanocomposites was higher than that without modification. The interfacial shear strength (IFSS) and apparent modulus also increased with plasma treatment of carbon fiber.

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

MCC의 부유부상 효율에 미치는 MCC의 표면에너지와 액상의 표면장력의 영향에 대한 기초연구

  • Lee, Hak-Rae;Lee, Jin-Hui;Park, Il;Lee, Yong-Min;Han, Sin-Ho;Jo, Jung-Yeon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.20-20
    • /
    • 2001
  • 우리나라 제지산업은 화학펼프의 80%를 수입에 의존하고 었으나 고지회수율 및 이용율이 세계적으로 볼 때 매우 높은 환경친화적 산업이다. 고지 재활용 공정 중에 서 가장 핵심적인 공정인 부유부상 공정은 고상계의 표면특성 차이를 이용하여 소수성 의 잉크업자를 기포에 부착시켜 부상을 통하여 제거하는 공정이다. 고지 사용의 고도화 를 위해서는 부유부상 공정의 효율 증대가 절실히 요구되고 있다. 또한 부유부상 공정 의 핵심적인 인자로 부유부상을 통하여 제거되는 고형물질의 표면 특성 특히 소수화도 가 중요하다는 것은 보고된 바 있으나 부유부상에 필요한 표면 특성의 존재 여부와 표 면 에너지와 부유부상 효율의 관계 등에 관한 기본적인 연구가 더욱 필요한 실정이다. 이에 본 연구에서는 부유부상 공정을 기초과학적 측면에서 규명하기 위해 마 이 크로 크리 스탈린 셀룰로오스(Microcrystalline cellulose: MCC)를 모델 물질로 사용하 고 이들의 표면특성을 접촉각 측정을 통하여 평가하였다. 친수성의 표면 특성을 지닌 M MCC의 표면 특성을 소수성으로 바꾸기 위하여 AKD(alkyl ketene dimer)의 함량별로 사이징 처리하여 소수성을 지닌 잉크를 모벨링 하고 친수성 MCC를 염색시약을 이용 하여 흑색으로 염색함으로써 소수화 된 MCC와의 색차를 두어 섬유를 모델링 하였다. 이렇게 제조된 MCC의 소수화 정도를 평가하기 위하여 분말상태인 MCC를 pellet으로 제조하여 각기 다른 표면장력과 표변특성을 지난 용액을 이용하여 Advancing Contact A Angle을 측정하고 다양한 방법으로 이를 분석하여 시료의 표면에너지를 평가하였다 그 리고 부유부상 셀내의 액상의 이온강도와 표면장력 등 화학적인 인자에 의한 부유부상 분리효과를 평가하였다.있었다 (그림 2). 칼렌다는 종이를 높은 전단력과 압축력으로 변형시키는데 비해 도침은 단순히 압축 압력만을 종이에 가하는 것이 다르다고 볼 수 있는데, 라 이너지와 백상지가 같은 조건하에서 왜 이러한 큰 차이를 보이는 이유를 아직 알수 없다.해 동일한 공정 데이터들올 이용하여 보편적으로 사용하는 통계기법 중의 하나인 주성분회귀분석을 실시하였다. 주성분 분석은 여러 개의 반응변수에 대하여 얻어진 다변량 자료의 다차원적인 변 수들을 축소, 요약하는 차원의 단순화와 더불어 서로 상관되어있는 반응변수들 상호간 의 복잡한 구조를 분석하는 기법이다. 본 발표에서는 공정 자료를 활용하여 인공신경망 과 주성분분석을 통해 공정 트러블의 발생에 영향 하는 인자들을 보다 현실적으로 추 정하고, 그 대책을 모색함으로써 이를 최소화할 수 있는 방안을 소개하고자 한다.금 빛 용사 둥과 같은 표면처리를 할 경우임의 소재 표면에 도금 및 용 사에 용이한 재료를 오버레이용접시킨 후 표면처리를 함으로써 보다 고품질의 표면층을 얻기위한 시도가 이루어지고 있다. 따라서 국내, 외의 오버레이 용접기술의 적용현황 및 대표적인 적용사례, 오버레이 용접기술 및 용접재료의 개발현황 둥을 중심으로 살펴봄으로서 아직 국내에서는 널리 알려지지 않은 본 기 술의 활용을 넓이고자 한다. within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)로 이주된지 14일(日) 이후에 신장(腎臟)에서 수축된

  • PDF