• 제목/요약/키워드: Advanced nuclear reactors

검색결과 194건 처리시간 0.029초

Design of an Organic Simplified Nuclear Reactor

  • Shirvan, Koroush;Forrest, Eric
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.893-905
    • /
    • 2016
  • Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

Conceptual Design Based on Scale Laws and Algorithms Sub-critical Transmutation Reactors

  • Lee, Kwang-Gu;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.475-480
    • /
    • 1997
  • In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making fur both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors.

  • PDF

MCCARD: MONTE CARLO CODE FOR ADVANCED REACTOR DESIGN AND ANALYSIS

  • Shim, Hyung-Jin;Han, Beom-Seok;Jung, Jong-Sung;Park, Ho-Jin;Kim, Chang-Hyo
    • Nuclear Engineering and Technology
    • /
    • 제44권2호
    • /
    • pp.161-176
    • /
    • 2012
  • McCARD is a Monte Carlo (MC) neutron-photon transport simulation code. It has been developed exclusively for the neutronics design of nuclear reactors and fuel systems. It is capable of performing the whole-core neutronics calculations, the reactor fuel burnup analysis, the few group diffusion theory constant generation, sensitivity and uncertainty (S/U) analysis, and uncertainty propagation analysis. It has some special features such as the anterior convergence diagnostics, real variance estimation, neutronics analysis with temperature feedback, $B_1$ theory-augmented few group constants generation, kinetics parameter generation and MC S/U analysis based on the use of adjoint flux. This paper describes the theoretical basis of these features and validation calculations for both neutronics benchmark problems and commercial PWR reactors in operation.

FAST (floating absorber for safety at transient) for the improved safety of sodium-cooled burner fast reactors

  • Kim, Chihyung;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1747-1755
    • /
    • 2021
  • This paper presents floating absorber for safety at transient (FAST) which is a passive safety device for sodium-cooled fast reactors with a positive coolant temperature coefficient. Working principle of the FAST makes it possible to insert negative reactivity passively in case of temperature rise or voiding of coolant. Behaviors of the FAST in conventional oxide fuel-loaded and metallic fuel-loaded SFRs are investigated assuming anticipated transients without scram (ATWS) scenarios. Unprotected loss of flow (ULOF), unprotected loss of heat sink (ULOHS), unprotected transient overpower (UTOP) and unprotected chilled inlet temperature (UCIT) scenarios are simulated at end of life (EOL) conditions of the oxide and the metallic SFR cores, and performance of the FAST to improve the reactor safety is analyzed in terms of reactivity feedback components, reactor power and maximum temperatures of fuel and coolant. It is shown that FAST is able to improve the safety margin of conventional burner-type SFRs during ULOF, ULOHS, UTOP and UCIT.

가압경수형 원자력발전소의 과도현상 모의코드 개발 (Development of Transient Simulation Code for Pressurized Water Reactors)

  • Auh, Geun-Sun;Ko, Chang-Seog;Lee, Sung-Jae;Hwang, Dae-Hyun;Kim, Dong-Su;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.198-204
    • /
    • 1987
  • 발전소 과도현상과 비냉각재 상실사고를 모의할 수 있는 가압경수로발전소 모의코드 MCSIM을 개발하였다. 원자로 냉각재계통은 에너지 방정식과 운동량 방정식을 분리 취급하면서 Drift Flux 2상 유동모델, 적분 운동량 방정식 등을 사용하여 모델링하였다. 증기발생기의 모사는 Pot Boiler 모델을 사용하였고, 2차계통을 위해서는 분리 취급된 정상상태 에너지 방정식과 운동량방정식을 핵출력 계산을 위해서는 점 동특성 방정식을 사용하였다. 현재의 코드성능을 시험하기 위해 완전 냉각재 유동상실사고와 제어봉 집합체 인출 사고를 계산하여 그 결과를 원자력 5/6호기 최종 안전 보고서의 결과와 비교하였다.

  • PDF

COMPUTATIONAL INTELLIGENCE IN NUCLEAR ENGINEERING

  • UHRIG ROBERT E.;HINES J. WESLEY
    • Nuclear Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.127-138
    • /
    • 2005
  • Approaches to several recent issues in the operation of nuclear power plants using computational intelligence are discussed. These issues include 1) noise analysis techniques, 2) on-line monitoring and sensor validation, 3) regularization of ill-posed surveillance and diagnostic measurements, 4) transient identification, 5) artificial intelligence-based core monitoring and diagnostic system, 6) continuous efficiency improvement of nuclear power plants, and 7) autonomous anticipatory control and intelligent-agents. Several changes to the focus of Computational Intelligence in Nuclear Engineering have occurred in the past few years. With earlier activities focusing on the development of condition monitoring and diagnostic techniques for current nuclear power plants, recent activities have focused on the implementation of those methods and the development of methods for next generation plants and space reactors. These advanced techniques are expected to become increasingly important as current generation nuclear power plants have their licenses extended to 60 years and next generation reactors are being designed to operate for extended fuel cycles (up to 25 years), with less operator oversight, and especially for nuclear plants operating in severe environments such as space or ice-bound locations.