• Title/Summary/Keyword: Advanced internet resource

Search Result 102, Processing Time 0.026 seconds

A Study on the Organizational Culture and Performance of Xiaomi Corporation

  • Piao, Xue-Lian;Choi, Myeong-Cheol;Shang, Xian-Fa;Han, Joo-Hee;Pan, Xing-Chen
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.52-57
    • /
    • 2021
  • Most internet companies in China are learning from Xiaomi Corporation's management model and to improving their organizational structures and human resource management practices. This study analyzed the development situation of Chinese Internet economy and the Internet thinking of Xiaomi which is a role model of Chinese Internet companies. In addition, we studied Xiaomi's organizational structure, human resource management, employee training, performance management and incentive system. In particular, Xiaomi's human resource management system has a great influence on the company's high performance and efficient service culture. Furthermore, the organization of Xiaomi is horizontally divided into three floors (7 key founders, department heads, and employees), each floor is managed by one founder. Xiaomi is interested in and considers not only the work of new employees, but also personal issues, and is concerned with the work of others in performance management and shares responsibility. Xiaomi adopts a unique and rational human resource management model, guaranteeing a lot of work autonomy for employees, and improving organizational performance.

Interference-Aware Radio Resource Allocation in D2D Underlaying LTE-Advanced Networks

  • Xu, Shaoyi;Kwak, Kyung Sup;Rao, Ramesh R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2626-2646
    • /
    • 2014
  • This study presents a power and Physical Resource Blocks (PRBs) joint allocation algorithm to coordinate uplink (UL) interference in the device-to-device (D2D) underlaying Long Term Evolution-Advanced (LTE-A) networks. The objective is to find a mechanism to mitigate the UL interference between the two subsystems and maximize the weighted sum throughput as well. This optimization problem is formulated as a mixed integer nonlinear programming (MINLP) which is further decomposed into PRBs assignment and transmission power allocation. Specifically, the scenario of applying imperfect channel state information (CSI) is also taken into account in our study. Analysis reveals that the proposed PRBs allocation strategy is energy efficient and it suppresses the interference not only suffered by the LTE-A system but also to the D2D users. In another side, a low-complexity technique is proposed to obtain the optimal power allocation which resides in one of at most three feasible power vectors. Simulations show that the optimal power allocation combined with the proposed PRBs assignment achieves a higher weighted sum throughput as compared to traditional algorithms even when imperfect CSI is utilized.

A City-Level Boundary Nodes Identification Algorithm Based on Bidirectional Approaching

  • Tao, Zhiyuan;Liu, Fenlin;Liu, Yan;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2764-2782
    • /
    • 2021
  • Existing city-level boundary nodes identification methods need to locate all IP addresses on the path to differentiate which IP is the boundary node. However, these methods are susceptible to time-delay, the accuracy of location information and other factors, and the resource consumption of locating all IPes is tremendous. To improve the recognition rate and reduce the locating cost, this paper proposes an algorithm for city-level boundary node identification based on bidirectional approaching. Different from the existing methods based on time-delay information and location results, the proposed algorithm uses topological analysis to construct a set of candidate boundary nodes and then identifies the boundary nodes. The proposed algorithm can identify the boundary of the target city network without high-precision location information and dramatically reduces resource consumption compared with the traditional algorithm. Meanwhile, it can label some errors in the existing IP address database. Based on 45,182,326 measurement results from Zhengzhou, Chengdu and Hangzhou in China and New York, Los Angeles and Dallas in the United States, the experimental results show that: The algorithm can accurately identify the city boundary nodes using only 20.33% location resources, and more than 80.29% of the boundary nodes can be mined with a precision of more than 70.73%.

QoS Constrained Optimization of Cell Association and Resource Allocation for Load Balancing in Downlink Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1569-1586
    • /
    • 2015
  • This paper considers the optimal cell association and resource allocation for load balancing in a heterogeneous cellular network subject to user's quality-of-service (QoS) constraints. We adopt the proportional fairness (PF) utility maximization formulation which also accommodates the QoS constraints in terms of minimum rate requirements. With equal resource allocation this joint optimization problem is either infeasible or requires relaxation that yields a solution which is difficult to implement. Nevertheless, we show that this joint optimization problem can be effectively solved without any priori assumption on resource allocation and yields a cell association scheme which enforces single BS association for each user. We re-formulated the joint optimization problem as a network-wide resource allocation problem with cardinality constraints. A reweighted heuristic l1-norm regularization method is used to obtain a sparse solution to the re-formulated problem. The cell association scheme is then derived from the sparsity pattern of the solution, which guarantees a single BS association for each user. Compared with the previously proposed method based on equal resource allocation, the proposed framework results in a feasible cell association scheme and yields a robust solution on resource allocation that satisfies the QoS constraints. Our simulations illustrate the impact of user's minimum rate requirements on cell association and demonstrate that the proposed approach achieves load balancing and enforces single BS association for users.

Subcarrier and Power Allocation for Multiuser MIMO-OFDM Systems with Various Detectors

  • Mao, Jing;Chen, Chen;Bai, Lin;Xiang, Haige;Choi, Jinho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4738-4758
    • /
    • 2017
  • Resource allocation plays a crucial role in multiuser multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems to improve overall system performance. While previously proposed resource allocation algorithms are mainly designed from the point of view of the information-theoretic, we formulate the resource allocation problem as an average bit error rate (BER) minimization problem subject to a total power constraint when considering employing realistic MIMO detection techniques. Subsequently, we derive the optimal subcarrier and power allocation algorithms for three types of well-known MIMO detectors, including the maximum likelihood (ML) detector, linear detectors, and successive interference cancellation (SIC) detectors. To reduce the complexity, we also propose a two-step suboptimal algorithm that separates subcarrier and power allocation for each detector. We also analyze the diversity gain of the proposed suboptimal algorithms for various MIMO detectors. Simulation results confirm that the proposed suboptimal algorithm for each detector can achieve a comparable performance with the optimal allocation with a much lower complexity. Moreover, it is shown that the suboptimal algorithms perform better than the conventional algorithms that are known in the literature.

Optimal Resource Planning with Interference Coordination for Relay-Based Cellular Networks

  • Kim, Taejoon;An, Kwanghoon;Yu, Heejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5264-5281
    • /
    • 2017
  • Multihop relay-based cellular networks are attracting much interest because of their throughput enhancement, coverage extension, and low infrastructure cost. In these networks, relay stations (RSs) between a base station (BS) and mobile stations (MSs) drastically increase the overall spectral efficiency, with improved channel quality for MSs located at the cell edge or in shadow areas, and enhanced throughput of MSs in hot spots. These relay-based networks require an advanced radio resource management scheme because the optimal amount of radio resource for a BS-to-RS link should be allocated according to the MS channel quality and distribution, considering the interference among RSs and neighbor BSs. In this paper, we propose optimal resource planning algorithms that maximize the overall utility of relay-based networks under a proportional fair scheduling policy. In the first phase, we determine an optimal scheduling policy for distributing BS-to-RS link resources to RSs. In the second phase, we determine the optimal amount of the BS-to-RS link resources using the results of the first phase. The proposed algorithms efficiently calculate the optimal amount of resource without exhaustive searches, and their accuracy is verified by comparison with simulation results, in which the algorithms show a perfect match with simulations.

CA Joint Resource Allocation Algorithm Based on QoE Weight

  • LIU, Jun-Xia;JIA, Zhen-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2233-2252
    • /
    • 2018
  • For the problem of cross-layer joint resource allocation (JRA) in the Long-Term Evolution (LTE)-Advanced standard using carrier aggregation (CA) technology, it is difficult to obtain the optimal resource allocation scheme. This paper proposes a joint resource allocation algorithm based on the weights of user's average quality of experience (JRA-WQOE). In contrast to prevalent algorithms, the proposed method can satisfy the carrier aggregation abilities of different users and consider user fairness. An optimization model is established by considering the user quality of experience (QoE) with the aim of maximizing the total user rate. In this model, user QoE is quantified by the mean opinion score (MOS) model, where the average MOS value of users is defined as the weight factor of the optimization model. The JRA-WQOE algorithm consists of the iteration of two algorithms, a component carrier (CC) and resource block (RB) allocation algorithm called DABC-CCRBA and a subgradient power allocation algorithm called SPA. The former is used to dynamically allocate CC and RB for users with different carrier aggregation capacities, and the latter, which is based on the Lagrangian dual method, is used to optimize the power allocation process. Simulation results showed that the proposed JRA-WQOE algorithm has low computational complexity and fast convergence. Compared with existing algorithms, it affords obvious advantages such as improving the average throughput and fairness to users. With varying numbers of users and signal-to-noise ratios (SNRs), the proposed algorithm achieved higher average QoE values than prevalent algorithms.

An Effective Solution for the Multimedia Telephony Services in Evolving Networks

  • Kim, Jong-Deug;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.24-26
    • /
    • 2013
  • In the process of a mobile network evolution to the All-IP, it is inevitable to experience a transient period embracing both circuit and packet based data traffics. At the stage of those hybrid networks, it is important to build them in an efficient manner in terms of resource utilization which is closely related to the overall system operation cost. Especially, the multimedia telephony is one of the essential services in the advanced packet based mobile networks. In this paper an effective method of system operation is proposed for building up the multimedia telephony service while the legacy network co-exists. The proposed solution is based on the careful investigation of the usage pattern of the multimedia services in the evolving networks. This method is also expected to be a useful guideline for the network resource planning.

An Engine for DRA in Container Orchestration Using Machine Learning

  • Gun-Woo Kim;Seo-Yeon Gu;Seok-Jae Moon;Byung-Joon Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.126-133
    • /
    • 2023
  • Recent advancements in cloud service virtualization technologies have witnessed a shift from a Virtual Machine-centric approach to a container-centric paradigm, offering advantages such as faster deployment and enhanced portability. Container orchestration has emerged as a key technology for efficient management and scheduling of these containers. However, with the increasing complexity and diversity of heterogeneous workloads and service types, resource scheduling has become a challenging task. Various research endeavors are underway to address the challenges posed by diverse workloads and services. Yet, a systematic approach to container orchestration for effective cloud management has not been clearly defined. This paper proposes the DRA-Engine (Dynamic Resource Allocation Engine) for resource scheduling in container orchestration. The proposed engine comprises the Request Load Procedure, Required Resource Measurement Procedure, and Resource Provision Decision Procedure. Through these components, the DRA-Engine dynamically allocates resources according to the application's requirements, presenting a solution to the challenges of resource scheduling in container orchestration.

Trade-off between Resource Efficiency and Fast Protection for Shared Mesh Protection

  • Cho, Choong-hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2568-2588
    • /
    • 2021
  • Shared mesh protection (SMP) protects traffic against failures occurring in a working path, as with linear protection, and allows resource sharing of protection paths with different endpoints. The SMP mechanism coordinates multiple protection paths that require shared resources when failures occur on multiple working paths. When multiple failures occur in SMP networks sharing limited resources, activation can fail because some of the resources in the protection path are already in use. In this case, a node confirming that a resource is not available has the option to wait until the resource is available or to withdraw activation of the protection path. In this study, we recognize that the protection switching time and the number of protected services can be different, depending on which option is used for SMP networks. Moreover, we propose a detailed design for the implementation of SMP by considering options and algorithms that are commonly needed for network nodes. A simulation shows the performance of an SMP system implemented with the proposed design and utilizing two options. The results demonstrate that resource utilization can be increased or protection switching time can be shortened depending on the option selected by the network administrator.