• Title/Summary/Keyword: Advanced imaging

Search Result 830, Processing Time 0.025 seconds

Coating defect classification method for steel structures with vision-thermography imaging and zero-shot learning

  • Jun Lee;Kiyoung Kim;Hyeonjin Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • This paper proposes a fusion imaging-based coating-defect classification method for steel structures that uses zero-shot learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured by an infrared (IR) camera, while photos of the coating surface are captured by a charge-coupled device (CCD) camera. The measured heat responses and visual images are then analyzed using zero-shot learning to classify the coating defects, and the estimated coating defects are visualized throughout the inspection surface of the steel structure. In contrast to older approaches to coating-defect classification that relied on visual inspection and were limited to surface defects, and older artificial neural network (ANN)-based methods that required large amounts of data for training and validation, the proposed method accurately classifies both internal and external defects and can classify coating defects for unobserved classes that are not included in the training. Additionally, the proposed model easily learns about additional classifying conditions, making it simple to add classes for problems of interest and field application. Based on the results of validation via field testing, the defect-type classification performance is improved 22.7% of accuracy by fusing visual and thermal imaging compared to using only a visual dataset. Furthermore, the classification accuracy of the proposed method on a test dataset with only trained classes is validated to be 100%. With word-embedding vectors for the labels of untrained classes, the classification accuracy of the proposed method is 86.4%.

High-Speed NMR Imaging by Spiral -Scan Echo Planar Method (나선형 주사 방법에 의한 고속 NMR 영상화 연구)

  • Ahn, C.B.;Rew, C.Y.;Kim, J.H.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1985 no.06
    • /
    • pp.22-25
    • /
    • 1985
  • 본고에서, "나선형 주사 방법에 의한 고속 NMR 영상화" 방법을 제안하고 그에 따른 실험 결과를 보였다. 이것은 2차원 FID 영역을 나선형 궤적으로 스캐닝하며 데이타를 받을 수 있도록 경사 자계 파형 (gradient pulse)을 가하여 빠른 시간에 (수십 msec - 수초)내에 영상 정보를 얻어낸 후, 재구성 알고리즘을 씀으로써 영상을 얻어내는 방법이다. 이 방법의 장점은 첫째로 $T_2$ 감쇄에 의한 PSF (Point Spread Function)가 윈형 대칭으로 주어지므로 영상화 했을때 물체의 구조 식별이 기존의 EPI (Echo Planar Imaging) 방법에 비해서 선명하며, 둘째로 나선형 궤적을 구현하기 의한 경사 자계 파형에서 불연속 점을 없앰과 동시에 파형의 세기가 점차로 증가하는 형태이므로, 기존의, 파형 왜곡에 의해 영상에 미치는 영향을 최소화 할 수가 있으며, 세째로 나선형 스캔을 사이 사이에 끼워 넣는 방법을 씀으로써 해상도를 향상시킬 수가 있다.

  • PDF

Synthesis of 18F Labeled Clotrimazole Derivatives as a Potential PET Imaging Agent (18F을 표지 암 영상용 클로트리마졸 유도체의 합성)

  • Jung, Soon Jae;Kim, In Jong;Park, Jeong Hoon;Lee, Heung Nae;Kim, Sang Wook;Hur, Min Goo;Choi, Sang Moo;Yang, Seung Dae;Yu, Kook Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Clotrimazole [1-{(2-chlorophenyl)-diphenylmethyl}-1H-imidazole, CLT] has been reported to inhibit the proliferation of vascular endothelial and act as an in vitro anti-VEGF drug. It is also shown to inhibit angiogenesis in an animal model. The radioisotope labeled clotrimazole derivative can be utilized to monitor the physiologic processes of cancer. In this study, we synthesized [$^{18}F$]fluoride labeled clotrimazole derivatives as a new tumor imaging agent for PET. The references were prepared by a refluxing with clotrimazole and an excess of fluoroalkyltosylate in acetonitrile for 36 h and clotrimazole reacted with ditosylalkane to give precursors. [$^{18}F$]Fluoride labeled reaction was performed with precursor in Kryptofix[2.2.2]/$K_2CO_3$ for 10 min at $80^{\circ}C$. The radiolabeling mixture was passed through a silica Sep-Pak cartridge to remove $^{18}F^-$. The [$^{18}F$]F-clotrimazole derivatives were synthesized with a 20~25% yield. In the radiofluorination step, we used acetonitrile and DMSO as a solvent and observed a higher yield at the acetonitrile (25%) reaction compared with the DMSO reaction (5%).

Noninvasive Biomarker for Predicting Treatment Response to Concurrent Chemoradiotherapy in Patients with Hepatocellular Carcinoma

  • Chung, Yong Eun;Park, Jun Yong;Choi, Jin-Young;Kim, Myeong-Jin;Park, Mi-suk;Seong, Jinsil
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.351-360
    • /
    • 2019
  • Purpose: To investigate noninvasive biomarkers for predicting treatment response in patients with locally advanced HCC who underwent concurrent chemoradiotherapy (CCRTx). Materials and Methods: Thirty patients (55.5 ± 10.2 years old, M:F = 24:6) who underwent CCRTx due to advanced HCC were enrolled. Contrast-enhanced US (CEUS) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) were obtained before and immediately after CCRTx. The third CEUS was obtained at one month after CCRTx was completed. Response was assessed at three months after CCRTx based on RECIST 1.1. Quantitative imaging biomarkers measured with CEUS and MRI were compared between groups. A cutoff value was calculated with ROC analysis. Overall survival (OS) was compared by the Breslow method. Results: Twenty-five patients were categorized into the non-progression group and five patients were categorized into the progression group. Peak enhancement of the first CEUS before CCRTx (PE1) was significantly lower in the non-progression group (median, 18.6%; IQR, 20.9%) than that in the progression group (median, 59.1%; IQR, 13.5%; P = 0.002). There was no significant difference in other quantitative biomarkers between the two groups. On ROC analysis, with a cutoff value of 42.6% in PE1, the non-progression group was diagnosed with a sensitivity of 90.9% and a specificity of 100%. OS was also significantly longer in patients with PE1 < 42.6% (P = 0.014). Conclusion: Early treatment response and OS could be predicted by PE on CEUS before CCRTx in patients with HCC.

Thermal imaging and computer vision technologies for the enhancement of pig husbandry: a review

  • Md Nasim Reza;Md Razob Ali;Samsuzzaman;Md Shaha Nur Kabir;Md Rejaul Karim;Shahriar Ahmed;Hyunjin Kyoung;Gookhwan Kim;Sun-Ok Chung
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.31-56
    • /
    • 2024
  • Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

Magnetic Resonance Imaging in Thorax (흉부의 자기공명영상)

  • Choi, Byoung Wook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.6
    • /
    • pp.571-584
    • /
    • 2004
  • Magnetic Resonance Imaging (MRI) is one of the most advanced imaging techniques in clinical and research medicine. However, clinical application of MRI to the lung or thorax has been limited due to various drawbacks. Low signal intensity of the lung and cardiac and respiratory movements are the most serious problems with MRI in thorax. Nevertheless, MRI is superior to CT in some selected patients with thoracic diseases. The role of clinical MRI in thoracic disease has been widened with improvement of MR equipments and development of new pulse sequences. Otherwise, functional assessment of lung by MRI has been studied for the last decade. These include perfusion MRI with or without contrast enhancement and ventilation MRI with oxygen-enhancement or hyperpolarized noble gas, $^3He$ and $^{129}Xe$.

Incidental finding of an extensive oropharyngeal mass in magnetic resonance imaging of a patient with temporomandibular disorder: A case report

  • Omolehinwa, Temitope T.;Mupparapu, Mel;Akintoye, Sunday O.
    • Imaging Science in Dentistry
    • /
    • v.46 no.4
    • /
    • pp.285-290
    • /
    • 2016
  • In this report, we describe the incidental finding of an oropharyngeal mass in a patient who presented with a chief complaint of temporomandibular pain. The patient was initially evaluated by an otorhinolaryngologist for complaints of headaches, earache, and sinus congestion. Due to worsening headaches and trismus, he was further referred for the management of temporomandibular disorder. The clinical evaluation was uneventful except for limited mouth opening (trismus). An advanced radiological evaluation using magnetic resonance imaging revealed a mass in the nasopharyngeal/oropharyngeal region. The mass occupied the masticatory space and extended superioinferiorly from the skull base to the mandible. A diagnostic biopsy of the lesion revealed a long­standing human papilloma virus (HPV­16)­positive squamous cell carcinoma of the oropharynx. This case illustrates the need for the timely radiological evaluation of seemingly innocuous orofacial pain.

Gamma-ray Detectors for Nuclear Medical Imaging Instruments (핵의학 영상기기의 감마선 검출기)

  • Cho, Gyu-Seong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.88-97
    • /
    • 2008
  • In this review paper, basic configurations of gamma detectors in SPECT and PET systems were reviewed together with key performance parameters of the imaging system, such as the detection efficiency, the spatial resolution, the contrast resolution, and the data acquisition time for quick understanding of the system-component relationship and future design of advanced systems. Also key elements of SPECT and PET detectors, such as collimators, gamma detectors were discussed in conjunction with their current and future trend. Especially development trend of new scintillation crystals, innovative silicon-based photo-sensors and futuristic room-temperature semiconductor detectors were reviewed for researchers who are interested in the development of future nuclear medical imaging instruments.

EVALUATION OF THE RADIOMETRIC AND SPECTRAL CHARACTERISTICS OF THE CAISS

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • The Compact Airborne Imaging Spectrometer System (CAISS) was jointly designed and developed as the hyperspectral imaging system by Korea Aerospace Research Institute (KARI) and ELOP inc., Israel. The primary mission of the CAISS is to acquire and provide full contiguous spectral information with high quality spectral and high spatial resolution for advanced applications in the field of remote sensing. The CAISS consists of six physical units; the camera system, the gyro-stabilized mount, the jig, the GPS/INS, the power inverter and distributor, and the operating system. These subsystems shall be tested and verified in the laboratory before the flight. Especially the camera system of the CAISS shall be calibrated and validated with the calibration equipments such as the integrated sphere and spectral lamps. To improve data quality and availability, it is the most important to understand the mechanism of hyperspectral imaging system and the radiometric and spectral characteristics. This paper presents the major characteristics of camera system on the CAISS and summarizes the results of radiometric and spectral experiment during preliminary system verification.

  • PDF

Organized hematoma of temporomandibular joint

  • Lee, Chena;Yook, Jong In;Han, Sang-Sun
    • Imaging Science in Dentistry
    • /
    • v.48 no.1
    • /
    • pp.73-77
    • /
    • 2018
  • Organized hematoma is a pseudo-tumorous lesion mostly occurs at sinonasal cavity and often confused with malignant neoplasm. The initiation of this lesion is blood accumulation, probably due to trauma, and this hematoma develops into organized hematoma as it encapsulated with fibrous band and neo-vascularized. Since it is uninformed at temporomandibular joint (TMJ) region, imaging diagnosis might be challenging. Also, delayed detection of mass involving TMJ is not uncommon due to confusion with joint disorder. Thus, this report introduced the rare pathology, organized hematoma on TMJ with advanced imaging features. Also, diagnostic point for early detection was described for the TMJ tumors and pseudo-tumors considering complexity of surgical intervention in this region.