• 제목/요약/키워드: Advanced glycosylation end products

검색결과 4건 처리시간 0.02초

Ginseng total saponin modulates podocyte p130Cas in diabetic condition

  • Ha, Tae-Sun;Lee, Jin-Seok;Choi, Ji-Young;Park, Hye-Young
    • Journal of Ginseng Research
    • /
    • 제37권1호
    • /
    • pp.94-99
    • /
    • 2013
  • Proteinuric conditions demonstrate structural and compositional changes of the foot processes and slit diaphragms between podocytes. p130Cas in podocytes serves as an adapter protein anchoring glomerular basement membrane to actin filaments of podocyte cytoskeleton. To investigate the effect of ginseng total saponin (GTS) on the pathologic changes of podocyte p130Cas induced by diabetic conditions, we cultured mouse podocytes under: 1) normal glucose (5 mM, control); 2) high glucose (HG, 30 mM); 3) advanced glycosylation endproducts (AGE)-added; or 4) HG plus AGE-added conditions and treated with GTS. In confocal imaging, p130Cas colocalized with zonula occludens-1 and synaptopodin connecting to F-actin. However, diabetic conditions relocalized p130Cas molecules at perinuclear cytoplasmic area and reduced the intensity of p130Cas. In Western blotting, diabetic conditions, especially HG plus AGE-added condition, decreased cellular p130Cas protein levels at 24 and 48 h. GTS improved such quantitative and qualitative changes. These findings imply that HG and AGE have an influence on the redistribution and amount of p130Cas of podocytes, which can be reversed by GTS.

제2형 당뇨 동물모델에서 가시오가피 추출물의 당화혈색소 및 최종당화산물 억제를 통한 혈당조절 효과 (Beneficial Effects of Acanthopanax senticosus Extract in Type II Diabetes Animal Model via Down-Regulation of Advanced Glycated Hemoglobin and Glycosylation End Products)

  • 권한올;이민희;김용재;김은;김옥경
    • 한국식품영양과학회지
    • /
    • 제45권7호
    • /
    • pp.929-937
    • /
    • 2016
  • 본 연구에서는 랫트를 이용한 제2형 당뇨 동물모델로 같은 혈당조절 효과가 나타나는지 검토하고 이러한 효과가 당화 혈색소를 포함한 최종당화산물(advanced glycation end products, AGEs)과 어떤 상관관계가 있는지 또한 단백질과 당화를 촉진해 당화혈색소 생성의 원인 중 하나인 산화적 스트레스와 관련된 기전을 규명하고자 하였다. 기존의 db/db 마우스에서 실험한 결과와 마찬가지로 랫트를 이용한 제2형 당뇨모델에서도 가시오가피 추출물의 섭취는 혈당을 강하시키고 homeostasis model assessment(Homa-IR)를 감소시켜 인슐린 저항성 개선에 도움을 주는 것으로 확인되었다. 특히 혈중 당화혈색소량의 감소가 두드러졌는데 이는 산화적 스트레스 감소로 인한 지질과산화물 생성의 억제가 중요한 원인으로 생각되며 이와 관련된 혈중 사이토카인 IL-$1{\beta}$와 TNF-${\alpha}$의 농도도 감소한 것으로 나타났다. 당화혈색소는 산화적 스트레스에 의해 최종당화산물로 전환이 되어 인슐린 저항성 세포의 protein kinase C(PKC)를 활성화하여 transforming growth factor(TGF)-${\beta}$를 생성하는데 가시오가피 추출물의 섭취는 최종당화산물의 농도, PKC 그리고 TGF-${\beta}$ 모두를 억제하는 것으로 확인되었으며, 이것은 가시오가피 추출물 성분이 PKC와 TGF-${\beta}$에 직접 작용하기보다는 신호전달체계의 상위에 존재하는 최종당화산물을 억제하여 나타난 결과로 생각한다. 향후 연구에서는 가시오가피 추출물을 분획화하여 어떤 성분에 의하여 당화혈색소와 최종당화산물 생성을 억제하는지에 대한 구체적인 실험이 이루어져야 할 것으로 여겨진다.

식이 다시마의 섭취가 당뇨 쥐 신장의 산화적 스트레스 및 당뇨성 병변에 미치는 영향 (Effect of Supplementation of Dietary Sea Tangle on the Renal Oxidative Stress in Diabetic Rats)

  • 박민영;김경희;정규식;김현아
    • 한국식생활문화학회지
    • /
    • 제22권1호
    • /
    • pp.140-148
    • /
    • 2007
  • Diabetic nephropathy has been increasing, although blood glucose and blood pressure can be controlled by angiotensin converting enzyme(ACE) or advanced glycosylation end products(AGE) inhibitors in the diabetic patients. We investigated the effect of dietary supplementation of sea tangle on the blood glucose, and pathological scoring of diabetic kidneys in the streptozotocin(STZ) induced diabetic rats. Male Sprague-Dawley rats were divided into normal rats fed control diet and diabetic rats fed control diet or control diet supplemented with powder or oater extract of sea tangle. Diabetes was induced by a single injection of STZ(60mg/kg, ip) in citrate buffer. The animals were fed the experimental diet and water for 13 weeks. Dietary supplementation of sea tangle decreased blood glucose in the diabetic rats. However, dietary supplementation of sea tangle did not affect the antioxidant enzyme activities, MDA content and pathology of diabetic kidneys. These results indicate that decreased blood glucose by sea tangle could not delay the progression of diabetic kidney disease.

Ginseng total saponin modulates the changes of ${\alpha}$-actinin-4 in podocytes induced by diabetic conditions

  • Ha, Tae-Sun;Choi, Ji-Young;Park, Hye-Young;Nam, Ja-Ae;Seo, Su-Bin
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.233-238
    • /
    • 2014
  • Background: The actin cytoskeleton in podocytes is essential for the maintenance of its normal structure and function. Its disruption is a feature of podocyte foot-process effacement and is associated with proteinuria. ${\alpha}$-Actinin-4 in podocytes serves as a linker protein binding the actin filaments of the cytoskeleton. Methods: To investigate the effect of ginseng total saponin (GTS) on the pathological changes of podocyte ${\alpha}$-actinin-4 induced by diabetic conditions, we cultured mouse podocytes under normal glucose (5mM) or high glucose (HG, 30mM) conditions, with or without the addition of advanced glycosylation end products (AGE), and treated with GTS. Results: In confocal imaging, ${\alpha}$-actinin-4 colocalized with the ends of F-actin fibers in cytoplasm, but diabetic conditions disrupted F-actin fibers and concentrated ${\alpha}$-actinin-4 molecules at the peripheral cytoplasm. GTS upregulated ${\alpha}$-actinin protein in a time- and dose-dependent manner, and suppressed the receptor for AGE levels in western blotting. Diabetic conditions, including HG, AGE, and both together, decreased cellular ${\alpha}$-actinin-4 protein levels at 24 h and 48 h. Such quantitative and qualitative changes of ${\alpha}$-actinin-4 protein induced by diabetic conditions were mitigated by GTS. Conclusion: These findings imply that both HG and AGE have an influence on the distribution and amount of ${\alpha}$-actinin-4 in podocytes that can be recovered by GTS.