• Title/Summary/Keyword: Advanced development

Search Result 8,588, Processing Time 0.038 seconds

New Produce Development Strategies : The Case of the Advanced Mineral Aggregate Composite Industry (석재복합 신제품 개발전략 탐색)

  • Kim, Jai-Myung
    • Korean Business Review
    • /
    • v.11
    • /
    • pp.173-194
    • /
    • 1998
  • This study suggests the theoretical framework and strategy of new product development in the advanced mineral aggregate composite industry. The advanced mineral aggregate composite area needs to prepare the plan and guidelines on the new product development owing to the characteristic of the related technology. Alternative scenarios on the hierachy of new product idea is effective to the success of new product development strategy. Especially, the existing market, product, and the technological advantages affects the possibility of the success of new product development of the small firms. Also considering the interrelationship between the technological trends is important to the new product development of advanced mineral aggregate composite industry.

  • PDF

Influence of Vertical Centrifugal Casting (V.C.C) Conditions and Alloying Elements on Microstructures of High Speed Steel (고속도강의 미세조직에 미치는 합금원소 및 수직원심주조 조건의 영향)

  • Kim, Sug-Won;Lee, Ui-Jong;Woo, Kee-Do;Kim, Dong-Keon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • The HSS consists of hard carbide and matrix of martensite, and so its characteristics of wear resistance, fracture resistance, and surface roughness are good. This study was undertaken to investigate the influence of Nb and V and manufacturing conditions on microstructural behaviors and characteristics in the HSS cylindrical specimens(90 $mm^{O.D.}$ ${\times}$ 60 $mm^{I.D.}$ ${\times}$ 50 $mm^H$) manufactured using VCC(Vertical Centrifugal Casting). In the specimen of Fe-2C-6Cr-1.5W-3Mo-4V alloy, the amount of MC carbide was increased and $M_7C_3$ carbide was decreased with the increase of V and Nb contents. The primary VC carbide was formed and followed by the rod-type eutectic MC carbide was formed in the cell boundary in 9%V added specimen. MC carbide was increased, and $M_7C_3$ carbide was decreased with the addition of Nb content. In the specimen containing more than 3%Nb, primary NbC carbide was formed within the cell of matrix. With increase in rpm, cell and carbides became fine, and amount of carbide $M_7C_3$ was decreased due to increase in cooling rate.

  • PDF

A Comparative Study of Gas Sensing Properties of Au-loaded ZnO and Au@ZnO Core-shell Nanoparticles

  • Majhi, Sanjit Manohar;Dao, Dung Van;Lee, Hu-Jun;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2018
  • Au@ZnO core-shell nanoparticles (NPs) were prepared by a simple method followed by heat-treatment for gas sensor applications. The advantage of the core-shell morphology was investigated by comparing the gas sensing performances of Au@ZnO core-shell NPs with pure ZnO NPs and different wt% of Au-loaded ZnO NPs. The crystal structures, shapes, sizes, and morphologies of all sensing materials were characterized by XRD, TEM, and HAADF-STEM. Au@ZnO core-shell NPs were nearly spherical in shape and Au NPs were encapsulated in the center with a 40-45 nm ZnO shell outside. The gas sensing operating temperature for Au@ZnO core-shell NPs was $300^{\circ}C$, whereas it was $350^{\circ}C$ for pure ZnO NPs and Au-loaded ZnO NPs. The maximum response of Au@ZnO core-shell NPs to 1000 ppm CO at $300^{\circ}C$ was 77.3, which was three-fold higher than that of 2 wt% Au-loaded ZnO NPs. Electronic and chemical effects were the primary reasons for the improved sensitivity of Au@ZnO core-shell NPs. It was confirmed that Au@ZnO core-shell NPs had better sensitivity and stability than Au-loaded ZnO NPs.

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Heat and Wear Resistance Characterization of SiCp Reinforced Al Matrix Composites (SiCp입자강화 Al 복합재료의 내열 및 마모특성)

  • Kim, Sug-Won;Kim, Wan-Ki;Woo, Kee-Do;Ahn, Haeng-Keun
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.377-385
    • /
    • 2000
  • Al matrix composites as the most promising MMCs can be expected to be excellent engineering materials in the nearest future. So as to improve material properties of composite, many manufacturing processes have been developed. Among them, squeeze casting process which offers fine microstructure and near-net-shape is one of the most successful MMCs manufacturing processes. But, in case of with subsieve size particles (under 44 ${\mu}m$), it is very difficult to homogeneously distribute particles in matrix of Al matrix composite by various casting processes, including squeeze casting used so far. Duplex process which was developed in previous study was used to distribute the particle of subsieve size more homogeneously in matrix of Al matrix composite. Microstructures, wear and heat resistance characterization of Al-Si-Cu-Mg-(Ni)/SiCp manufactured by duplex process were examined to clarify the effect of manufacturing conditions, particle size of reinforcement and alloying elements. Al matrix composites reinforced with SiCp(10 ${\mu}m$) have the lowest wear amount among composites reinforced with 3 ${\mu}m$, 5 ${\mu}m$ and 10 ${\mu}m$ SiCp. The wear amount of Al matrix composites with 10 wt.% SiCp(3, 5, 10 ${\mu}m$) was decreased according to the increase of the sliding speed because abrasive wear takes place at high sliding speed of 4m/s and worn debris with block type occurs at low sliding speed of 1m/s. As for heat resistance, it is made clear that remarkable heat resistance property can be obtained by addition of Ni element in Al matrix composites.

  • PDF

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

Austenite Stability of Nanocrystalline FeMnNiC Alloy (나노결정 FeMnNiC합금의 오스테나이트 안정성)

  • Oh, Seung-Jin;Jeon, Junhyub;Shon, In-Jin;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.389-394
    • /
    • 2019
  • In the present study, we have investigated the effect of sintering process conditions on the stability of the austenite phase in the nanocrystalline Fe-5wt.%Mn-0.2wt.%C alloy. The stability and volume fraction of the austenite phase are the key factors that determine the mechanical properties of FeMnC alloys, because strain-induced austenite-martensite transformation occurs under the application of an external stress at room temperature. Nanocrystalline Fe-5wt.%Mn-0.2wt.%C samples are fabricated using the spark plasma sintering method. The stability of the austenite phase in the sintered samples is evaluated by X-ray diffraction analysis and hardness test. The volume fraction of austenite at room temperature increases as the sample is held for 10 min at the sintering temperature, because of carbon diffusion in austenite. Moreover, water quenching effectively prevents the formation of cementite during cooling, resulting in a higher volume fraction of austenite. Furthermore, it is found that the hardness is influenced by both the austenite carbon content and volume fraction.

A PRELIMINARY EVALUATION OF UNPROTECTED LOSS-OF-FLOW ACCIDENT FOR A PROTOTYPE FAST-BREEDER REACTOR

  • SUZUKI, TOHRU;TOBITA, YOSHIHARU;KAWADA, KENICHI;TAGAMI, HIROTAKA;SOGABE, JOJI;MATSUBA, KENICHI;ITO, KEI;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.240-252
    • /
    • 2015
  • In the original licensing application for the prototype fast-breeder reactor, MONJU, the event progression during an unprotected loss of flow (ULOF), which is one of the technically inconceivable events postulated beyond design basis, was evaluated. Through this evaluation, it was confirmed that radiological consequences could be suitably limited even if mechanical energy was released. Following the Fukushima-Daiichi accident, a new nuclear safety regulation has become effective in Japan. The conformity of MONJU to this new regulation should hence be investigated. The objectives of the present study are to conduct a preliminary evaluation of ULOF for MONJU, reflecting the knowledge obtained after the original licensing application through CABRI experiments and EAGLE projects, and to gain the prospect of in-vessel retention for the conformity of MONJU to the new regulation. The preliminary evaluation in the present study showed that no significant mechanical energy release would take place, and that thermal failure of the reactor vessel could be avoided by the stable cooling of disrupted-core materials. This result suggests that the prospect of in-vessel retention against ULOF, which lies within the bounds of the original licensing evaluation and conforms to the new nuclear safety regulation, will be gained.

Development of the Wireless Technique for Health Monitoring of Superconducting Motor (초전도 모터의 상태진단을 위한 데이터 신호 무선처리 기법개발)

  • Seo, K.C.;Lee, M.R.;Lee, J.H.;Kwon, Y.K.;Shon, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.829-834
    • /
    • 2004
  • This research is to development advanced health(condition) monitoring system of superconducting motors. Development of advanced condition monitoring systems offers the prospect of improved performance, assessment, and operation, simplified design, enhanced safety, and reduced overall cost of advanced and next generation superconducting motor. For advanced and next generation superconducting motor design, the opportunity exists to develop and implement real-time and continuous monitoring systems by integrating wireless and computational technique. Generally, condition monitoring and control of temperature is essential for managing the superconducting motor components, rotor and structures. In this research, development of advanced monitoring in low temperature and high speed operating environments offers the potential to greatly improve the control of harsh environments. In conventional method, slip rings have been used to acquire data from these sensors. However, the increase of sensors leads to vibration of the rotation axis and noise signals due to kinematics contact. In this study, the wireless data acquisition technique was employed to develop more stable monitoring system adequate for high speed rotating system.

  • PDF