• Title/Summary/Keyword: Advanced composite materials

Search Result 1,135, Processing Time 0.028 seconds

Study on the Damage Characteristics Under the High-Velocity Impact of Composite Laminates Using Various Sensor Signals (다양한 센서 신호를 이용한 복합적층판의 고속충격 손상 특성 연구)

  • Cho, Sang-Gyu;Kim, In-Gul;Lee, Seok-Je;You, Won-Young
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • The use of advanced composite materials in main structures of military and civil aircraft has been increased rapidly because of their considerable metals in high specific strength and stiffness. However, the mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single sensor or any conventional methods. In this paper, the PVDF sensors and AE sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) is used to decompose the sensor signals. In the PVDF sensor and AE sensor signal analysis, amounts of high-frequency signals are increased when the impact energy is increased. PVDF sensor and AE sensor signal appeared similar results. This study shows how various sensing techniques can be used to characterize high-velocity impact damage of advanced composite laminates.

Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 STS304와 Ta 섬유 강화 Zr계 비정질 복합재료의 준정적 및 동적 변형거동)

  • Kim, Yongjin;Shin, Sang Yong;Kim, Jin Sung;Huh, Hoon;Kim, Ki Jong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.477-488
    • /
    • 2010
  • Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.

Papyrus reinforced poly(L-lactic acid) composite

  • Nishino, Takashi;Hirao, Koichi;Kotera, Masaru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2007
  • Mechanical reinforcement of an all-sustainable composite, composed of papyrus stem-milled particles as reinforcement and poly-L-lactic acid (PLLA) resin as matrix, was investigated. The papyrus particles (average diameter of $70{\mu}m$) could be well dispersed in PLLA resin up to 50 wt% without any surface modification. Young's modulus of the composite was 4.2 GPa at 50 wt% of the papyrus content. This is a two-fold increment in modulus as compared to that of the PLLA matrix. The tensile strength of the composite was almost constant around 48 MPa irrespective of the papyrus content. Temperature dependence of the storage modulus demonstrated that the incorporation of papyrus restricts the large drop in the modulus above the glass transition of PLLA.

Thermal Characteristics of Hybrid Insert for Carbon Composite Satellite Structures

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.162-167
    • /
    • 2015
  • Composite sandwich structures are widely employed in various applications, due to their high specific stiffness and specific bending strength compared to solid panels. Lately, for that reason, the advanced composite sandwich structures are employed in satellite structures: materials should be as light as possible with the highest attainable performance. This study is majorly focused on inserts employed to the composite sandwich satellite structures. A new hybrid insert design was developed in precedent study to reduce the mass of the sandwich structure since the mass of the satellite structure is related to high launching cost [1]. In this study, the thermal characteristics and behavior of the precedently developed hybrid insert with carbon composite reinforcing web and the conventional partial insert were numerically investigated.

Wet to Shrink: an Approach to Realize Negative Expansion upon Wetting

  • Sun, L.;Huang, W.M.
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2009
  • Composites can be designed to have special properties, and even such properties that are difficult to find in nature. We propose a simple approach to realize negative expansion upon wetting, i.e., contraction upon wetting, using swelling materials. The key parameters in one-dimensional case are investigated, and the possible configurations for two and three-dimensional cases are presented. The feasibility is demonstrated through a simple test.

Cure Behaviors and Mechanical Interfacial Properties of Epoxy/Polyurethane Blends (에폭시/우레탄 블렌드의 경화거동과 기계적 계면특성에 관한 연구)

  • Seok Su-Ja;Lee Jae-Rock;Park Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.104-107
    • /
    • 2004
  • In this work, the blend of diglycidylether of bisphenol A (DGEBA) and modified polyurethane (PU) was prepared and characterized in the cure behaviors and mechanical interfacial properties. The N-benzylpyrazinium hexafluoroantimonate was used as a cationic initiator for cure, and the content of PU was varied within 0-20 phr. The cure behaviors and mechanical interfacial properties were studied by DSC, near­IR, and the critical stress intensity actor $(K_{IC})$ measurements. Also thermal stabilities were carried out by TMA and TGA analyses. As a result, the cure activation energy $(E_a)$ and the conversion $(\alpha)$ were slightly increased with increasing the PU content, and a maximum value was found at 10 phr PU. The mechanical interfacial properties measured from $K_{IC}$ showed a similar behaviors with the results of conversion. These results were probably due to the increase of the hydrogen bonding between the hydroxyl groups of DGEBA and isocyanate groups in PU.

  • PDF

Studies on Cure Behavior and Thermal Stability of Epoxy/PMR-15 Polyimide Blend System (에폭시/PMR-15 폴리이미드 블렌드계의 경화동력학 및 열안정성에 관한 연구)

  • Lee, Jae-Rock;Lee, Hwa-Young;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.265-268
    • /
    • 2002
  • In this work, the blend system of epoxy and PMR-15 polyimide is investigated in terms of the cure behaviors and thermal stabilities. The cure behaviors are studied in DSC measurements and thermal stabilities are also carried out by TGA analysis. DDM (4, 4'-diamino diphenyl methane) is used as curing agent for EP and the content of PMR-15 is varied within 0, 5, 10, 35, and 20 phr to neat EP. As a result, the cure activation energy ($E_a$) is increased at 10 phr of PMR-15, compared with that of neat EP. From the TGA results of EP/PMR-15 blend system, the thermal stabilities based in the initial decomposed temperature (IDT) and integral procedural decomposition temperature (IPDT) are increased with increasing the PMR-15 content. The fracture toughness, measured in the context of critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$), shows a similar behavior with $E_a$. This result is probably due to the crosslinking developed by the interactions between intermolecules in the polymer chains.

  • PDF

Effect of Radiation Intensity on Mechanical Properties of UV-cured Vinylester/Unsaturated Polyester Blend System (UV 경화가 비닐에스터와 불포화폴리에스터 블랜드 시스템의 물성 특성에 미치는 영향)

  • Lee, Jae-Rock;Kim, Young-Mi;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.269-272
    • /
    • 2002
  • UV curing technology becomes important in various sectors of applications due to the high efficiency, environmental protection, and saving of energy. The effect of different proportion of vinylester (VE) and unsaturated polyester (UP) for VE/UP blend system was investigated in context of mechanical properties. The compositions of VE/UP blend were varied within 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 by weight percent. 1 wt% 1-hydroxy-cyclohexyl-phenyl-ketone was used as photoinitiator. The used intensity of UV light was in the range of $40~70 mW/\textrm{cm}^2$. The flexural strength of vinylester was not sensitive to the intensity of UV light. But the unsaturated polyester was very sensitive to the intensity of UV light. The flexural strength of vinylester was always superior to that of unsaturated polyester. The addition of the vinylester increased the flexural strength of blend system.

  • PDF