• Title/Summary/Keyword: Advanced Vortex Method

Search Result 67, Processing Time 0.028 seconds

Experimental Study on the Flow around a Square Prism with a Splitter Plate (분리판이 설치된 정사각주 주위의 유동특성에 관한 연구)

  • Park Jong-Kyu;Seo Seong-Ho;Boo Jung Sook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.915-922
    • /
    • 2005
  • This experimental study is conducted to investigate effects of a splitter plate, which is set on the back side of a square prism in the uniform flow. The Reynolds number is $1.44{\times}10^{4}$ based on the width of the square prism. The measurement of velocity vector and pressure distribution are carried out 4 cases of length in the range of 0.5L to 2.0L with 0.5L interval and 3 cases of Position at 0L, 0.25L, 0.5L, Flow visualization is also executed by smoke-wire method to understand the mechanism of vortex formation The results show the strong vortex shedding patterns and drags are decreased effectively, when the position of splitter plate is 0L. And the drag reduction rate is in inverse proportion to the splitter plate length

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream (가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석)

  • Kim, Jeong-Hu;Yoon, Hyun-Sik;Tuan H.A.;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.

An Unstructured Mesh Technique for Rotor Aerodynamics

  • Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.24-25
    • /
    • 2006
  • An unstructured mesh method has been developed for the simulation of steady and time-accurate flows around helicopter rotors. A dynamic and quasi-unsteady solution-adaptive mesh refinement technique was adopted for the enhancement of the solution accuracy in the local region of interest involving highly vortical flows. Applications were made to the 2-D blade-vortex interaction aerodynamics and the 3-D rotor blades in hover. The interaction between the rotor and the airframe in forward flight was investigated by introducing an overset mesh technique.

  • PDF

Numerical Investigation of Flow-pattern and Flow-induced Noise for Two Staggered Circular Cylinders in Cross-flow by LBM

  • Kim, Jeong-Whan;Oh, Sae-Kyung;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.82-93
    • /
    • 2008
  • The flowfield behind two cylinders and flow-induced noise generated from the cylinders in various arrangement are numerically investigated based on the finite difference lattice Boltzmann model with 21 velocity bits. which is introduced a flexible specific heat ${\gamma}$ to simulate diatomic gases like air. In an isolated cylinder with two type of mesh. some flow parameters such as Strouhal number $S_t$ and acoustic pressure ${\Delta}p$ simulated from the solution are given and quantitatively compared with those provided the previous works. The effects of the center-to-center pitch ratio $L_{cc}/d=2.0$ in staggered circular cylinders as shown in Fig. 1 and angles of incidence ${\alpha}=30^{\circ}(T_{cc}/d=0.5)$, $45^{\circ}(T_{cc}/d =0.707)$ and $60^{\circ}\;(T_{cc}/d=0.866)$, respectively, are studied. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in staggered arrangement. With the results of drag $C_d$ and lift $C_l$ coefficients and vorticity contours. the mechanisms of the interference phenomenon and its interaction with the two-dimensional vortical structures are present in the flowfields under $Re\;{\le}\;200$. The results show that we successively capture very small pressure fluctuations, with the same frequency of vortex shedding, much smaller than the whole pressure fluctuation around pairs of circular cylinders. The upstream cylinder behaves like an isolated single cylinder, while the downstream one experiences wake-induced flutter. It is expected that, therefore, the relative position of the downstream cylinder has significant effects on the flow-induce noise, hydrodynamic force and vortex shedding characteristics of the cylinders.

Application of Subgrid Turbulence Model to the Finite Difference Lattice Boltzmann Method (차분 래티스볼츠만법에 Subgrid 난류모델의 적용)

  • Kang Ho-Keun;Ahn Soo-Whan;Kim Jeong-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.580-588
    • /
    • 2006
  • Two-dimensional turbulent flows past a square cylinder and cavity noise are simulated by the finite difference lattice Boltzmann method with subgrid turbulence model. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of FDLBM for handling arbitrary boundaries. The results are compared with those by the experiments carried out by Noda & Nakayama and Lyn et al. Numerical results agree with the experimental ones. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

A Study about Vortex Flow Characteristics on Delta Wing by Time-resolving PIV (시간해상도 PIV를 이용한 델타형 날개에서의 와류 유동특성에 관한 연구)

  • Choi, Min-Seon;Lee, Hyun;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.493-499
    • /
    • 2004
  • The dominant effect of the interaction between vortices, generated by the addition of the Leading Edge Extension(LEX) in front of the wing, was well observed in this experiment. In this study, systematic approach by PIV experimental method within a circulating water channel was adopted to study the fundamental characteristics of induced vertex generation, development and its breakdown appearing on a delta wing model with or without LEX in terms of four angles of attack($15^{\circ}$, $20^{\circ}$, $25^{\circ}$, $30^{\circ}$) and six measuring sections(30%, 40%, 50%, 60%, 70%, 80%) of chord length. Distributions of time-averaged velocity vectors and vortices over the delta wing model were compared along the chord length direction. High-speed CCD camera which made it possible to acquire serial images is able to get the detailed information about the flow characteristics occurred on the delta wing. Especially quantitative comparison of the maximum vorticity featuring the induced pressure distribution were also conducted to clarity the significance of the LEX existence.

An Analysis of the Flow Field and Radiation Acoustic Field of a Centrifugal Impeller with Wedge(I) -An Analysis of the Flow Field and Aeroacoustic Source- (웨지가 있는 원심 임펠러의 유동 및 방사 음향장 해석(I) -유동장 및 소음원 해석-)

  • Lee, Deok-Ju;Jeon, Wan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1157-1164
    • /
    • 2001
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few research have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan. We assume that the impeller rotates with a constant angular velocity and the flow field of the impeller is incompressible and inviscid. So, a discrete vortex method(DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowsons method is used to predict the acoustic source. In order to compare the experimental data, a centrifugal impeller and wedge introduced by Weidemann are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal.

Aerodynamic Analysis of Passenger Car with High Accuracy Using H-refinement (H-분할법을 이용한 승용차의 고정도 공력특성 해석)

  • 김태훈;정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.33-41
    • /
    • 2000
  • Three dimensional flow fields around passenger car body was computed by PAM-FLOW, well-known and validated computer program for thermal and fluid analysis. Regarding the computational method, a Navier-Stokes solver based on finite element method with various turbulent models and adaptive grid technique (H-refinement)was adopted. The results were physically reasonable and compared with experimental data, giving good agreement. It was found that three dimensional flow simulation with H-refinement technique had potential for prediction of low fie이 around vehicle and the ability to predict vortex in the wake, which is vital for CFD to be used for automobile aerodynamic calculation.

  • PDF