• Title/Summary/Keyword: Advanced Sensor

Search Result 1,510, Processing Time 0.032 seconds

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Cho, Woosung;Kim, Hyeonmin;Kim, Duckhyun;Kim, SongHyun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2229-2236
    • /
    • 2021
  • In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

A Study on the Transmitter Design for Transmitting Output Power Enhancement of Active Magnetic Sensor (능동형 자기센서의 송신출력 향상을 위한 송신기 설계에 관한 연구)

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.159-165
    • /
    • 2013
  • A active magnetic sensor has been widely used in the underwater guided weapon system because it is able to detect a target accurately in close range, but the target doesn't have any good countermeasure to overcome the threat from the active magnetic sensor. Recently, in order to increase the damage area of target by shock wave with explosion of the underwater weapon system and to detect small target, the maximum target detection range of the active magnetic sensor needs to be increased. One method for improving maximum target detection range is to improve output power from transmitter through demagnetization factor minimization of a transmitting core. Thus, in this paper, we describe the study results on the transmitter core shape design to enhance output power of the active magnetic sensor.

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

A Study on the Advanced Impedance Converter for Pipeline Health Monitoring (배관 안전진단을 위한 향상된 임피던스 컨버터 연구)

  • Kwon, Young-Min;Lee, Hyung-Su;Song, Byung-Hun
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The Underground pipeline facility is a general but most important facility in modern world, but its maintainability has been left behind. An automated and intelligent management technology is needed to prevent the wast of social resource and security. In this paper, we introduce Pipeline Health Monitoring(PHM) with Ubiquitous Sensor Network(USN) for inexpensive structure safety monitoring system, and improve its utility by inventing the advanced impedance converter.

  • PDF

Development of Intelligent Filler Wire Feeding Device for Improvement of Weld quality (용접부 품질향상을 위한 지능형 용접 와이어 공급 장치 개발)

  • Lee J.S.;Sohn Y.I.;Park K.Y.;Lee K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.950-955
    • /
    • 2005
  • This paper describes an intelligent filler wire feeding device which can control 3- dimensional seam tracking and the filler wire speed by measuring the gap position and the joint gap width in laser welding. By means of visual sensor controlled filling the missing material into the joint gap and 3 dimensional seam tracking, lineup errors from manufacturing tolerances and the repeatability of lineup jigs and weld robot can be balanced and at an even seam quality which avoids weld defects. In this paper, we assessed weld quality in 2mm sheets of A16061 which had various gap width by using the intelligent filler wire feeding device.

  • PDF

Model Based Fault Detection for Advanced ESC System (지능형 ESC 시스템을 위한 모델 기반 결함검출)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2306-2313
    • /
    • 2010
  • This paper describes a model based fault detection algorithm for an Advanced ESC System which consists of Hydraulic Control Unit (HCU) with built-in wheel pressure sensors. Advanced ESC System can be used for various value-added functions such as Stop & Go Function and Regenerative Brake Function. Therefore, HCU must have a reliable fault detection. Due to the huge amount of sensor signals, existing specific sensor based fault detection of HCU cannot guarantee the safety of vehicle. However, proposed algorithm dose not require the sensors. When model based fault detection algorithm detects severe failures of the HCU, it warns the driver in advance to prevent accidents due to the failures. For this purpose, a mathematical model is developed and validated in comparison to actual data. Simulation results and data acquired from an actual system are compared with each other to obtain the information needed for the fault detection process.

A Study on Concentration Detection Technology of Air Mixing Gas according to Temperature Variation for Refrigerator Foam System (온도변화에 따른 냉장고 발포시스템용 에어믹싱가스 농도검출기술에 관한 연구)

  • Koo, Yeong-Mok;Yang, Jun-Suk;Jo, Sang-Young;Kim, Min-Seong;Noh, Chun-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • This study proposes the temperature compensation algorithm using thermopile detector for non-dispersive infrared Nitrogen gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module characteristics of narrow bandpass filter, optical cavity and infrared lamp, and air mixing gas have been introduced in order to implement the temperature compensation algorithm.