• 제목/요약/키워드: Advanced Power Reactor

검색결과 416건 처리시간 0.03초

Seismic responses of nuclear reactor vessel internals considering coolant flow under operating conditions

  • Park, Jong-beom;Lee, Sang-Jeong;Lee, Eun-ho;Park, No-Cheol;Kim, Yong-beom
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1658-1668
    • /
    • 2019
  • Nuclear power generates a large portion of the energy used today and plays an important role in energy development. To ensure safe nuclear power generation, it is essential to conduct an accurate analysis of reactor structural integrity. Accordingly, in this study, a methodology for obtaining accurate structural responses to the combined seismic and reactor coolant loads existing prior to the shutdown of a nuclear reactor is proposed. By applying the proposed analysis method to the reactor vessel internals, it is possible to derive the seismic responses considering the influence of the hydraulic loads present during operation for the first time. The validity of the proposed methodology is confirmed in this research by using the finite element method to conduct seismic and hydraulic load analyses of the advanced APR1400 1400 MWe power reactor, one of the commercial reactors. The structural responses to the combined applied loads are obtained using displacement-based and stress-based superposition methods. The safety of the subject nuclear reactor is then confirmed by analyzing the design margin according to the American Society for Mechanical Engineers (ASME) evaluation criteria, demonstrating the promise of the proposed analysis method.

노심손상빈도 평가를 위한 APR+ PAFS의 안전 해석 (Safety Analysis of APR+ PAFS for CDF Evaluation)

  • 강상희;문호림;박영섭
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.123-128
    • /
    • 2013
  • The Advanced Power Reactor Plus(APR+), which is a GEN III+ reactor based on the APR1400, is being developed in Korea. In order to enhance the safety of the APR+, a passive auxiliary feedwater system(PAFS) has been adopted in the APR+. The PAFS replaces the conventional active auxiliary feedwater system(AFWS) by introducing a natural driving force mechanism while maintaining the system function of cooling the primary side and removing the decay heat. As the PAFS completely replaces the conventional AFWS, it is required to verify the cooling capacity of PAFS for the core damage frequency(CDF) evaluation. For this reason, this paper discusses the cooling performance of the PAFS during transient accidents. The test case and scenarios were picked from the result of the sensitivity analysis in APR+ Probabilistic Safety Assessment(PSA). The analysis was performed by the best estimate thermal-hydraulic code, RELAP5/.MOD3.3. This study shows that the plant maintains the stable state without the core damages under the given test scenarios. The results of PSA considering this analysis' results shows that the CDF values are decreased. The analysis results can be used for more realistic and accurate performance of a PSA.

Computer Based Core Monitoring System for an Operating CANDU Reactor

  • Yoon Moon Young;Kwon Hwan O.;Kim Kyung Hwa;Yeom Choong Sub
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.53-63
    • /
    • 2004
  • The research was performed to develop a CANDU-6 Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong nuclear power plant unit 1. The CCMS uses Reactor Fueling Simulation Program(RFSP, developed by AECL) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from Digital Control Computer(DCC) for the purpose of producing basic input data. The CCMS has two modules; CCMS server program and CCMS client program. The CCMS server program performs automatic and continuous core calculation and manages overall output controlled by DataBase Management System. The CCMS client program enables users to monitor current and past core status in the predefined GUI(Graphic-User Interface) environment. For the purpose of verifying the effectiveness of CCMS, we compared field-test data with the data used for Wolsong unit 1 operation. In the verification the mean percent differences of both cases were the same($0.008\%$), which showed that the CCMS could monitor core behaviors well.

일체형원자로 제어봉구동장치에 장착되는 전자석의 설계 및 특성해석 (The Design, Fabrication, and Characteristic Experiment of Electromagnet to Control Element Drive Mechanism in System-Integrated Modular Advanced Reactor)

  • 허형;김종인;김건중
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권4호
    • /
    • pp.147-147
    • /
    • 2003
  • This paper describes the finite element analysis(FEA) for the design of electromagnet for Control Element Drive Mechanism(CEDM) in System-integrated Modular Advanced Reactor(SMART) and compared with the lifting power characteristics of prototype electromagnet. A thermal analysis was performed for the electromagnet. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the electromagnet windings be maintained within the allowable limit of the insulation. since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. As a result, it is shown that the characteristics of prototype electromagnet have a good agreement with the results of FEA. The thermal properties obtained here will be used as input for the optimization analysis of the electromagnet.

NONLINEAR CONTROL FOR CORE POWER OF PRESSURIZED WATER NUCLEAR REACTORS USING CONSTANT AXIAL OFFSET STRATEGY

  • ANSARIFAR, GHOLAM REZA;SAADATZI, SAEED
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.838-848
    • /
    • 2015
  • One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented.SMCis ameansto control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

Supercritical CO2-cooled fast reactor and cold shutdown system for ship propulsion

  • Kwangho Ju;Jaehyun Ryu;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1022-1028
    • /
    • 2024
  • A neutronics study of a supercritical CO2-cooled fast reactor core for nuclear propulsion has been performed in this work. The thermal power of the reactor core is 30 MWth and a ceramic UO2 fuel can be used to achieve a 20-year lifetime without refueling. In order to make a compact core with inherent safety features, the drum-type reactivity control system and folding-type shutdown system are adopted. In addition, we suggest a cold shutdown system using gadolinium as a spectral shift absorber (SSA) against flooding. Although there is a penalty of U-235 enrichment for the core embedded with the cold shutdown system, it effectively mitigates the increment of reactivity at the flooding of seawater. In this study, the neutronics analyses have been performed by using the continuous energy Monte Carlo Serpent 2 code with the evaluated nuclear data file ENDF/B-VII.1 Library. The supercritical CO2-cooled fast reactor core is characterized in view of important safety parameters such as the reactivity worth of reactivity control systems, fuel temperature coefficient (FTC), coolant temperature coefficient (CTC), and coolant temperature-density coefficient (CTDC). We can say that the suggested core has inherent safety features and enough flexibility for load-following operation.

Insights from the KNGR Preliminary Level 1 Probabilistic Safety Assessment

  • Na, Jang-Hwan;Oh, Hae-Cheol;Oh, Seung-Jong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.862-868
    • /
    • 1998
  • Korean Next Generation Reactor(KNGR) is a standardized evolutionary Advanced Light Water Reactor design under development Korea Power Company(KEPCO). It incorporates design enhncements such as active and passive advanced design features(ADFs) to increase the plant safety. A Preliminary level 1 Probabilistic Safety Assessment(PSA) has been performed for KNGR to examine the effect of these safety features. The preliminary PSA result shows that it meets the KNGR safety goal on core damage frequency(CDF). The result of this safety assessment shows that the four-train safety systems, and the ADFs such as Passive Secondary Cooling System (PSCS) contributes greatly to the reduction the CDF. Furthermore, several design changes are made or proposed for detailed review based on the PSA insights.

  • PDF