• Title/Summary/Keyword: Advanced MCL

Search Result 18, Processing Time 0.018 seconds

An Advanced MCL Method for a Sharing Analysis of Mobile Communication Systems beyond 3G (차세대 이동통신 시스템의 주파수 공유분석을 위한 개선된 MCL 방법)

  • Chung Woo-Ghee;Yoon Hyun-Goo;Jo Han-Shin;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.307-316
    • /
    • 2006
  • In this paper the analytical method, namely advanced minimum coupling loss(A-MCL), was proposed in order to analyze the coexistence of OFDM-based systems beyond 3G(B3G) with point-to point(PP) fixed service(FS) microwave systems. Our proposed method is based on a power spectral density(PSD) analysis. So it can be easily applicable to analyze the coexistence of OFDM-based systems B3G using flexible spectrum usage(FSU) with other systems, where the conventional MCL method cannot allocate transmit power partially to some subcarriers which overlap the band of a victim system. By applying the conventional MCL method and the A-MCL method, interfering power levels at the receiver of a interfered system are respectively calculated. A-MCL can calculate interference power more accurately than MCL by the maximum value of 4.5 dB. Therefore it can be concluded that our prosed method, namely A-MCL, is applicable to a sharing analysis of OFDM-based systems B3G.

Coexistence of OFDM-Based IMT-Advanced and FM Broadcasting Systems

  • Shamsan, Zaid A.;Rahman, Tharek A.;Kamarudin, Muhammad R.;Al-Hetar, Abdulaziz M.;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.279-282
    • /
    • 2011
  • Coexistence analysis is extremely important in examining the possibility for spectrum sharing between orthogonal frequency-division multiplexing (OFDM)-based international mobile telecommunications (IMT)-Advanced and other wireless services. In this letter, a new closed form method is derived based on power spectral density analysis in order to analyze the coexistence of OFDM-based IMT-Advanced systems and broadcasting frequency modulation (FM) systems. The proposed method evaluates more exact interference power of IMT-Advanced systems in FM broadcasting systems than the advanced minimum coupling loss (A-MCL) method. Numerical results show that the interference power is 1.3 dB and 3 dB less than that obtained using the A-MCL method at cochannel and adjacent channel, respectively. This reduces the minimum separation distance between the two systems, which eventually saves spectrum resources.

Frequency Sharing of Cellular TDD-OFDMA Systems beyond 3G with Terrestrial Fixed Systems (TDD-OFDMA 기반의 차세대 셀룰라 시스템과 육상 고정 시스템 간의 주파수 공유 분석)

  • Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.125-133
    • /
    • 2007
  • In this paper, the frequency sharing issue between cellular time division duplex-orthogonal frequency division multiple access (TDD-OFDMA) Systems and terrestrial Fixed Systems has been studied. The conventional advanced minimum coupling loss (A-MCL) includes only the formulation to calculate the interference from one interfering system. Therefore, A-MCL must be modified to assess the aggregated interference from base stations(BS) and mobile stations(MS). By applying the modified model, the coexistence analysis are done according to the average number of MS per sector, BS-to-BS distance, and the main beam direction of the terrestrial fixed system. In the case of 20 MS per sector, the BS-to-BS distance and the minimum distance between a terrestrial fixed system and BS are 5.8 km and 2.5 km, respectively. It is about 25dB that the difference between maximum and minimum interference signal power which varies with the main beam direction of the terrestrial fixed system. Moreover, for 40% of the main beam direction of the terrestrial fixed system, interference signal power is less than the maximum permissible interference.

Analysis of Radio Interference through Ducting for 2.5 GHz WiMAX Service

  • Son, Ho-Kyung;Kim, Jong-Ho;Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • Radio interference has been occurring in mobile communication services on the southern seashore in Korea. Monitoring the radio interference signal revealed that the main reason for the radio interference was a radio ducting signal coming from the seaside of Japan. In this paper, we have analyzed the effect of interference on WiMAX service using a 2.5 GHz frequency band between Korea and Japan. We focus on the interference scenario from base station to base station and we use the Minimum Coupling Loss (MCL) method for interference analysis and the Advanced Propagation Model (APM) for calculating the propagation loss in ducts. The propagation model is also compared with experimental measurement data. We confirm that the interfering signal strength depends on the antenna height and this result can be applied to deployment planning for each system with an interference impact acceptable to both parties.

Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment (구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식)

  • Kim, Donghoon;Lee, Donghwa;Myung, Hyun;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

Frequency Sharing of TDD-OFDM/OFDMA Based Systems beyond 3G with Fixed Satellite Service Earth Station (TDD-OFDM/OFDMA 기반의 차세대 이동 통신 시스템과 고정 위성서비스 지구국 간의 주파수 공유 분석)

  • Jo Han-Shin;Yoon Hyun-Goo;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.440-450
    • /
    • 2006
  • In this paper, the frequency sharing issue between time division duplex-orthogonal frequency division multiplexing/orthogonal frequency division multiple access(TDD-OFDM/OFDMA) based systems beyond third generation(B3G) and fixed Satellite Service(FSS) earth station has been studied. The conventional advanced minimum coupling loss(A-MCL) is adopted to assess the interference from a single base station(BS) of B3G systems. The aggregated interferences from base stations and mobile stations(MS) are evaluated by applying the extended A-MCL and analysed with a cumulative density function(CDF). The minimum distances that enable a single FSS earth station to sharing the frequency with a single BS are between 4 and 53.3 km. In the case of 20 MS per sector, the BS-to-BS distance and the minimum distance between a ES and BS are 6.5 and 2.8 km, respectively.

Analysis on the Impact of UWB Sensor on Broadband Wireless Communication System (UWB 센서에 의한 광대역 무선 시스템의 간섭 영향 분석)

  • Cheng, Yan-Ming;Lee, Il-Kyoo;Lee, Yong-Woo;Oh, Seung-Hyeub;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper presents the impacts of Ultra Wide-Band(UWB) sensor using frequency of 4.5 GHz on Broadband Wireless communication system which uses frequency of 4.5 GHz. The Minimum Coupling Loss (MCL) method and Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) is used to evaluate the interference effects of UWB sensor on Broadband Wireless communication system, respectively. The minimum protection distance between single UWB sensor and mobile station of Broadband Wireless communication system should be more than 1.2 m to guarantee the co-existence. In case of multiple UWB sensors, UWB transmitting PSD of around -68.5 dBm/MHz below should be required to guarantee interference probability of 5% below for mobile station of Broadband Wireless communication system.

High Cell Density Cultivation of Pseudomonas oleovorans for the Production of Poly(3-Hydroxyalkanoates)

  • Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.51-53
    • /
    • 1996
  • Fed-batch culture of Pseudomonas oleovorans was carried out for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using octanoate as a carbon source. Octanoate and the salt solution containing ammounium sulfate and magnesium sulfate were intermittently fed in the course of fermentation. Cell mass and PHA concentrations of 42.8 and 16.8g/L, respectively, could be obtained in 40 h. The PHA content and the PHA productivity were 39.2% and 0.42 g PHA/L-h, respectively. The yields of cell mass and PHA were 0.71 g dry cell mass/g octanoate and 0.28g PHA/g octanoate, respectively. Therefore, octanoate can be used for the production of MCL-PHAs to a high concentration with high productivity.

  • PDF