• Title/Summary/Keyword: Advanced High Strength Steel Sheet(AHSS)

Search Result 19, Processing Time 0.017 seconds

Recent Progress of Automotive Galvanized Steels in Korea

  • Lee, Suk-Kyu;Kim, Jong-Sang;Choo, Wung-Yong
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.254-258
    • /
    • 2010
  • Due to the global warming and economic crisis, automakers are currently focusing on the development of high fuel-efficiency vehicles. To accord with these requirements, steelmakers have been trying to develop advanced high-strength steels with improved automotive-related properties. In addition, galvanizing technologies have been developed to improve coating properties for AHSS (Advanced High Strength Steel) such as pre-oxidation and pre-coating, as well as roll dent prevention. In this paper, newly developed products and technologies for automotive galvanized steel sheet are reviewed.

Design of Helical SPR for Joining Advanced High Strength Steel and Aluminum Alloy Sheets (초고장력강과 알루미늄 합금의 판재 접합을 위한 헬리컬 SPR 설계)

  • Kim, Dongbum;Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.55-59
    • /
    • 2015
  • Self-piercing riveting (SPR) is a sheet-joining method that can be used for materials that are difficult or unsuitable for weld, such as aluminum alloys and other steel sheet metals. The increased application of lightweight materials has initiated many investigations into new SPR conditions for riveting dissimilar materials. However, buckling of the semi-tubular rivet occurs during the riveting of AHSS. In this study, a helical SPR was designed for the riveting of AHSS and Al-alloy. In addition, the reinforced helical SPR which has straight parts was designed. The riveting of AHSS and Al-alloy was simulated. Simulated results were verified by comparison with experimental ones.

A Development of Longitudinal and Transverse Springback Prediction Model Using Artificial Neural Network in Multipoint Dieless Forming of Advanced High Strength Steel (초고강도 판재 다점성형공정에서의 인공신경망을 이용한 2중 곡률 스프링백 예측모델 개발)

  • Kwak, M.J.;Park, J.W.;Park, K.T.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.76-88
    • /
    • 2020
  • The need for advanced high strength steel (AHSS) forming technology is increasing as interest in light weight and safe automobiles increases. Multipoint dieless forming (MDF) is a novel sheet metal forming technology that can create any desired longitudinal and transverse curvature in sheet metal. However, since the springback phenomenon becomes larger with high strength metal such as AHSS, predicting the required MDF to produce the exact desired curvature in two directions is more difficult. In this study, a prediction model using artificial neural network (ANN) was developed to predict the springback that occurs during AHSS forming through MDF. In order to verify the validity of model, a fit test was performed and the results were compared with the conventional regression model. The data required for training was obtained through simulation, then further random sample data was created to verify the prediction performance. The predicted results were compared with the simulation results. As a result of this comparison, it was found that the prediction of our ANN based model was more accurate than regression analysis. If a sufficient amount of data is used in training, the ANN model can play a major role in reducing the forming cost of high-strength steels.

Experimental Determination of Friction Characteristics for Advanced High Strength Steel Sheets (초고강도강판 마찰특성의 실험적 규명)

  • Kim, N.J.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • The friction coefficients of advanced high strength steel sheets were experimentally determined. In the friction test, the pulling and holding forces acting on the sheet for various friction conditions, such as lubricant viscosity, pulling speed, blank holding pressure, sheet surface roughness, and hardness of the sheet were measured and the friction coefficient was calculated based on Coulomb's friction law. While the friction coefficient, generally, decreases as the value of friction factor increases, the factor associated with the sheet surface roughness shows U shape behavior for the friction coefficient. Furthermore, the relationship between friction coefficient and the wear volume, which was computed for the roughness of both sheet surfaces and the friction area, is linearly proportional.

Design of self-piercing rivet to joint in advanced high strength steel and aluminium alloy sheets (초고장력강과 알루미늄 합금의 접합을 위한 SPR 설계)

  • Kim, Dongbum;Qiu, Yuangen;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • Self-piercing riveting is an joining method of advanced high strength steels (AHSS) and other dissimilar materials. It has attracted considerable interest from the automotive industry. The SPR has become an interesting alternative joining technique for difficult to weld materials such as steels and aluminium alloys. In this paper, self-piercing rivet and anvil for SPR were designed for the joining conditions with AHSS and aluminium alloy. Various conditions of SPR were simulated for the design of rivets and anvils. The simulated results were in good agreement with experimental ones. As a result, over HV500 rivet is desirable to joint SPFC780 AHSS and aluminum alloy.

Development of Durability Enhancement Technology for Arc Weldings in Advanced High Strength Steel (AHSS) Chassis Parts (고장력강판 적용 샤시부품의 용접부 내구수명 향상기술 개발)

  • Lee, Kwang Bok;Oh, Seung Taik
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.50-56
    • /
    • 2015
  • In general, discontinuity of metallurgical and structural points of weld zone could decline the fatigue strength. For the lightweight trend, the AHSS application in automotive chassis is in-progress. However, there are few research reports on AHSS welds fatigue strength in especially automotive chassis parts. Therefore, in this study, we evaluated the effects of the factors affecting the AHSS welding fatigue strength. As the result, the stress concentration of weld bead is the most important factor for welding fatigue strength. For the enhancement of welding fatigue strength, we focused on reducing the stress concentration of the welding beads. So, we applied and proved the plasma welding process and GTAW (Gas Tungsten Arc Welding) dressing method. It was verified by uniaxial fatigue specimen, fatigue performance increased from 40 to 60% by applying TIG dressing method compared to the conventional GMAW (Gas Metal Arc Welding). These results could be recommended the enhancement of fatigue performance of AHSS.

Design of Drawbeads for Advanced High Strength Steel Sheet Forming (초고강도 강판 성형용 드로비드 설계)

  • Kim, B.G.;Jeong, J.Y.;Kim, D.J.;Kim, G.S.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.420-423
    • /
    • 2009
  • In this study, the guideline for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is investigated. In the drawbead drawing test, the drawbead forces for verifying the equivalent drawbead model(EDM) and the sheet strains for finding marginal strains from $FLC_0$ are measured. In the finite element analysis (FEA), the bending allowance, R/t, is obtained. Based on the forming and bending allowances obtained, the design guideline of the drawbead for determining height and width, which depends on the restraining force and the forming allowance, is prepared by using EDM.

  • PDF

Lobe Curve Characteristic Analysis of Resistance Spot Welding for Sheet Combination of 780MPa Steel Sheet Using Simulation (시뮬레이션을 이용한 780MPa급 강재의 판재 조합에 따른 저항 점 용접의 로브곡선 특성 분석)

  • Son, Chang-Seok;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.68-73
    • /
    • 2012
  • Nowadays, car manufacturers tried to improve automotive fuel efficiency, and applied many high strength steels such as AHSS or UHSS to car bodies. Therefore, the number of steel combinations for the resistance spot welding are dramatically increased and the need for weldability evaluation of these combinations are also required. In this study, we suggest the lobe curve using FEM simulations for DP780 steel with 1.0t, 1.4t. The lobe curves which could expressed weldablity and optimal welding condition were obtained according to 6 steel combinations. There were two combinations for same steel sheet which were DP780 1.0t, DP780 1.4t. Dissimilar steel sheet combination with different thickness was 1.0t and 1.4t of DP780. Different steel combinations were DP780 1.0t and SPRC440 1.0t, and DP780 1.0t and DP590 1.0t. Finally dissimilar combinations was and DP780 1.0t and DP590 1.4t. The trend of low boundary and high boundary variation of lobe curve were analyzed with a viewpoint of the contact resistance and the heat input.

Springback Analysis of the Front Side Member with Advanced High Strength Steel (고강도 강판을 적용한 프런트 사이드 멤버의 스프링백 해석)

  • Song J. H.;Kim S. H.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.106-109
    • /
    • 2005
  • Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. Recently, advanced high strength steels (AHSS) such as TRIP and DP are finding acceptance in the automotive industry because their superior strength to weight ratio can lead to improved fuel efficiency and assessed crashworthiness of vehicles. The major troubles of the automotive structural members stamped with high strength steel sheets are the tendency of the large amount of springback due to the high yield strength and the tensile strength. The amount of springback is mainly influenced by the type of the yield function and anisotropic model induced by rolling. The discrepancy of the deep drawn product comparing the data of from the product design induced by springback must be compensated at the tool design stage in order to guarantee its function and assembly with other parts. The methodology of compensation of the low shape accuracy induced by large amount of springback is developed by the expert engineer in the industry. Recently, the numerical analysis is introduced in order to predict the amount of springback and to improve the shape accuracy prior to tryout stage of press working. In this paper, the tendency of springback is evaluated with respect to the blank material. The stamping process is analyzed fur the front side member formed with AHSS sheets such as TRIP60 and DP60. The analysis procedure fully covers the binderwrap, stamping, trimming and springback process with the commercial elasto-plastic finite element code LS-DYNA3D.

  • PDF

Springback Compensation of Sheet Metal Bending Process Based on DOE & ANN (판재 굽힘 성형에서 실험계획법 및 인공신경망을 이용한 탄성회복 보정)

  • An, Jae-Hong;Ko, Dae-Cheol;Lee, Chan-Joo;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.990-996
    • /
    • 2008
  • Nowadays, the trend to a lightweight design accelerates the use of advanced high strength steel (AHSS) in automotive industry. Springback phenomena is a hot issue in the sheet metal forming, especially bending process using AHSS. Several analytical methods for that have been proposed in recent years. Each of method has their advantages and disadvantages. There are only a few optimal solutions which can minimize the two objectives simultaneously. In this study, an effective method optimized the multi objective value. The method by the design of experiments(DOE) and artificial neural network(ANN) was presented to compensate springback of bending parts. This method was applied to L and V bending process. The effective method could be optimized to multiple object. It was confirmed that the proposed method was more efficient than traditional manual FEA procedure and the trial and error approach for springback compensation.