• Title/Summary/Keyword: Advanced Effectiveness

Search Result 1,358, Processing Time 0.028 seconds

A Study on Application of TPCLT(Twice Per Cycle Left-Turn) for a Signalized Three-Leg Intersection (3지 교차로의 TPCLT(Twice Per Cycle Left-Turn) 적용 방안 연구)

  • Han, Dajeong;Kim, Eungcheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.77-92
    • /
    • 2019
  • TPCLT is a advanced signal system that serves twice left turn phases during the same cycle. TPCLT can be a useful where the left turn traffic volume is high and the length of the left turn lane is short. This study examined the effectiveness of TPCLT in reducing delay for a signalized three-Leg intersection and proposed the application of TPCLT signal system. 108 scenarios with different traffic volumes were created. This study analyzed the control delay of the three-Leg intersection in case TPCLT is operated and non-TPCLT is operated. As a result of analysis, it was shown that TPCLT was effective in most of the scenarios. When traffic volume ratio of the left turn is 30~40%, TPCLT was more effective at reducing the control delay. The study result shows significant delay reduction for the left turning traffic and it is approximately 50 seconds. The opposing movement's average control delay increased 2 seconds. The effect of TPCLT on the length of left turn lane was analyzed. As a result, it is found that TPCLT is effective when the length of left turn lane is 30%~60% compared to that of conventional three leg intersection operations.

The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery (UAS 영상기반 문화유산물의 정밀 3차원 현상 모델링)

  • Lee, Yong-Chang;Kang, Joon-Oh
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.85-101
    • /
    • 2019
  • Recently, thank to the popularization of light-weight drone through the significant developments in computer technologies as well as the advanced automated procedures in photogrammetry, Unmanned Aircraft Systems have led to a growing interest in industry as a whole. Documentation, maintenance, and restoration projects of large scaled cultural property would required accurate 3D phenomenon modeling and efficient visual inspection methods. The object of this study verify on the accuracies achieved of 3D phenomenon reconstruction as well as on the validity of the preservation, maintenance and restoration of large scaled cultural property by UAS photogrammetry. The test object is cltural heritage(treasure 1324) that is the rock-carved standing Bodhisattva in Soraesan Mountain, Siheung, documented in Goryeo Period(918-1392). This standing Bodhisattva has of particular interests since it's size is largest stone Buddha carved in a rock wall and is wearing a lotus shaped crown that is decorated with arabesque patterns. The positioning accuracy of UAS photogrammetry were compared with non-target total station survey results on the check points after creating 3D phenomenal models in real world coordinates system from photos, and also the quantified informations documented by Culture Heritage Administration were compared with UAS on the bodhisattva image of thin lines. Especially, tests the validity of UAS photogrammetry as a alternative method of visual inspection methods. In particular, we examined the effectiveness of the two techniques as well as the relative fluctuation of rock surface for about 2 years through superposition analysis of 3D points cloud models produced by both UAS image analysis and ground laser scanning techniques. Comparison studies and experimental results prove the accuracy and efficient of UAS photogrammetry in 3D phenomenon modeling, maintenance and restoration for various large-sized Cultural Heritage.

Vessel and Navigation Modeling and Simulation based on DEVS Formalism : Design for Navigation Simulation Architecture with Modeling for Critical Systems and Agents of Vessel (DEVS 형식론 기반의 선박 항해 모델링 및 시뮬레이션 (I) : 항해 시뮬레이션 아키텍처 설계와 선박 핵심 장비 및 에이전트 모델링)

  • Woo, Sang-Min;Lee, Jang-Se;Hwang, Hun-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1038-1048
    • /
    • 2019
  • Recently, various systems have been developed to support ship navigation safety. In order to verify the usefulness of such a system, it is most ideal to try it on a real vessel, but there are many difficulties. As an alternative, usability verification methods applied with modelling and simulation (M&S) techniques are required such as FMSS, which is closest to reality, is very expansive to construct, and there needs the specialized operator. For this reason, this paper proposes a method to verify the navigation safety support system by modeling and simulation techniques based on the Discrete Event System Specification (DEVS) formalism. As a first step, we designed the navigation simulation architecture based on the SES/MB framework, and details on modelling ship core equipment and navigator agents based on the DEVS. Through this, we are able to implement the navigation simulation system for vessels, and evaluate the effectiveness of navigation safety support elements such as collision avoidance, etc. using developed scenarios.

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

Ergonomic Analysis for the Aging-Friendly Exercise Device Utilized on the Digital Load Control Technology (디지털 중량제어기술을 활용한 고령친화운동기구의 인간공학적 분석)

  • Kim, Bo-Kun;Jang, Young-Kwan;Hah, Chong-Ku;Baek, Jun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.252-260
    • /
    • 2021
  • For frailty management, the importance of resistance exercise has been emphasized, and various devices have been developed. Recently, digital weight control technology that converts electromagnetic resistance to a digital weight is attracting attention, but there are no reports confirming the effectiveness and safety of the device for seniors in Korea. This study conducted a biomechanic-based ergonomic analysis of an elderly-friendly exercise device utilized in digital load control technology to suggest a direction for development. Twenty seniors (age: 62.40 ± 2.09 years) were included. The load of the device was classified into three levels, and the muscle activity and heart rate were assessed during three experimental motions. A questionnaire based on the International Organization for Standardization 9241-11 was adopted to evaluate the stability, operationality, efficiency, and satisfaction with the software and device. The program could be divided into three exercise intensities that can be utilized in the field depending on whether the exercise load, muscle activity, and heart rate were consistent. The monitor size needed to be enlarged to make the menu Korean, reduce the device size, and minimize noise. Considering these findings, the development of an advanced age-friendly exercise device by improving the size, display, and noise is suggested.

A Study on Vortex-Induced Vibration Characteristics of Hydrofoils considering High-order Modes (고차모드를 고려한 수중날개 와류기인 진동특성 연구)

  • Choi, Hyun-Gyu;Hong, Suk-Yoon;Song, Jee-Hun;Jang, Won-Seok;Choi, Woen-Sug
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.377-384
    • /
    • 2022
  • Vortex-induced vibration (VIV) occurs owing to the vortex generated from the back side of the appendages of ships and submarines during operation. Recently, the importance of high-order modes (HOMs) vibration and fatigue failure has become increasingly emphasized by increasing the speed of ships and the size of structures. In addition, predicting the vibration of HOMs is significantly necessary as the VIV becomes stronger in the fast flow speed condition than in the low flow speed condition. This study introduces a methodology according to HOMs hybrid Fluid Structure Interaction (FSI) for predicting the HOMs VIV on the hydrofoils. The HOMs FSI system is verified by comparing the VIV results from the FSI simulation with the experimental results. Finally, the effectiveness of the HOMs FSI is determined by applying the maximum von-Mises stress obtained from the VIV on the hydrofoil to the S-N curve released from Det Norske Veritas (DNV). VIV results from the HOMs FSI include the lock-in characteristics as well as a significant increase of more than 10 times compared with that of low-order modes (LOMs) FSI. In the future works, advanced studies will be required for improving cantilever boundary conditions and the shape of hydrofoils.

Connectivity Verification and Noise Reduction Analysis of Smart Safety Helmet for Shipyard Worker (조선소 작업자를 위한 스마트 안전모의 커넥티비티 검증 및 소음저감 분석)

  • Park, Junhyeok;Heo, Junyeoung;Lee, Sangbok;Park, Jaemun;Park, Jun-Soo;Lee, Kwangkook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2022
  • Currently, the automation and intelligence of the shipbuilding industry have improved its work production capacity and cost competitiveness, but the reduction rate of safety accidents among industrial site workers is still low and the damage caused by safety accidents is very serious, so there is a need for improvement according to the workplace. This research aims to demonstrate the connectivity between smart safety helmets in the demonstration area to verify the effectiveness along with the development of smart helmets for worker protection and environmental safety in shipyards. For efficient communication between workers, impact noise of over 95dB was confirmed in the workplace, and noise reduction was required. To solve this problem, the filtering performance was compared and analyzed using the Butterworth, Chebyshev, and elliptic algorithms. The connectivity test and noise reduction method between smart helmets proposed in this study will increase the usability and safety of the field through the development of advanced smart helmets tailored to the shipbuilding workplace in the future.

Research on the Necessity of Building the Second Space Rocket Launching Sites for Breakthrough Development of R.O.K National Space Power (도약적 국가 우주력 발전을 선도할 제2 우주센터 구축 필요성 연구)

  • Park, Ki-tae
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.146-168
    • /
    • 2022
  • Witnessing current military conflicts in South China Sea and Eastern Europe, most defense analysts evaluate one of the most serious security threat toward the US is coming from the superpower competitions with Russia and China. The main means for such super power hegemonic competitions is military power and space power is a key enabler to maximize the efficiency and effectiveness of military employment. Reflecting above circumstances, the space hegemonic competition between the Unites States and China is spreading into all aspects of national powers. Under such an environment, R.O.K needs to significantly develop national space power to preserve life and assets of people in space. On the other hand, the R.O.K has a lot of limitations in launching space assets into orbits by land-based space rockets due to its geographic locations. The limitation of rocket launching direction, the failure to secure a significant area enough to secure safety and the limitation to secure open area enough to build associated facilities are among them. On this paper, I will suggest the need to build the 2nd space rocket launching site after analyzing a lot of short-falls the current 'Naro' space center face, compared to those of advanced space powers around the world.

Coastal Erosion Time-series Analysis of the Littoral Cell GW36 in Gangwon Using Seahawk Airborne Bathymetric LiDAR Data (씨호크 항공수심라이다 데이터를 활용한 연안침식 시계열 분석 - 강원도 표사계 GW36을 중심으로 -)

  • Lee, Jaebin;Kim, Jiyoung;Kim, Gahyun;Hur, Hyunsoo;Wie, Gwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1527-1539
    • /
    • 2022
  • As coastal erosion of the east coast is accelerating, the need for scientific and quantitative coastal erosion monitoring technology for a wide area increases. The traditional method for observing changes in the coast was precision monitoring based on field surveys, but it can only be applied to a small area. The airborne bathymetric Light Detection And Ranging (LiDAR) system is a technology that enables economical surveying of coastal and seabed topography in a wide area. In particular, it has the advantage of constructing topographical data for the intertidal zone, which is a major area of interest for coastal erosion monitoring. In this study, time series analysis of coastal seabed topography acquired in Aug, 2021 and Mar. 2022 on the littoral cell GW36 in Gangwon was performed using the Seahawk Airborne Bathymetric LiDAR (ABL) system. We quantitatively monitored the topographical changes by measuring the baseline length, shoreline and Digital Terrain Model (DTM) changes. Through this, the effectiveness of the ABL surveying technique was confirmed in coastal erosion monitoring.