• Title/Summary/Keyword: Advanced Construction Technology

Search Result 906, Processing Time 0.027 seconds

Applied cases of advanced construction & engineering technology at Tower Palace III Project (타워팰리스 III 현장의 첨단 시공 및 엔지니어링 기술 적용사례)

  • Wang In-Soo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.202-213
    • /
    • 2003
  • Tower Palace III project is the highest residential and commercial high-rise complex building in Korea. In order to construct a high-rise building, advanced construction and engineering technology is required. Therefore, with more developed construction and engineering technology based upon accumulated knowledge, construction speed of 13.4 days per floor including finish work was achieved in this project. To achieve this project successfully, three main advanced construction technology were applied: 1) Construction methods for 3-day cycle of structural work and curtain wall, 2) Tact scheduling method for finish work, 3) Management system of material, labor, work, and information. Also, four main engineering technology were applied: 1) New material such as high -flowing concrete and high strength concrete of 800 kgf/cm2, 2) New method such as a pipe-cooling system of a cool water circulating type, 3) Mechanical system such as smart-fan controlling kitchen-ventilation system, 4) Electrical system such as false car system.

  • PDF

Suggestion for sustainable development of Korean traditional wooden Structure (Hanok)

  • Lee, Yunsub;Jin, Zhenhui;Seo, Nuri;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.159-166
    • /
    • 2017
  • Recently, the wooden structure has been revived again as an eco-friendly structure technique. It is the counterattack of the wood material, which has become more recognized as a finishing material pushed by the concrete material in the rapid growth after the Industrial Revolution. However, it is difficult to conclude that this is a tendency of the construction market in the whole country. Perhaps this is a tendency to appear more strongly in Korea. It could be seen by comparing the characteristics of the overseas construction market with Korean's and the advanced constructed case of large-scale wooden structures in overseas. National wooden buildings show own characteristics such as construction methods, materials, and member dimensions of wood structures by country, which could be seen as a result of continuously developing their own technology. However, in Korea, despite its unique wooden structure and technology (Hanok; Korean traditional housing), it has not been developed continuously and treated it only as a living building exhibit. This is evidenced by the fact that only one percent of the building is constructed with traditional wooden building technology. Therefore, there are various efforts to modernize the traditional wooden structure technology, but it still does not reach the level of advanced wooden technology abroad. The characteristics of the Korean wooden building market were analyzed in order to suggest ways to develop the Korean wood structure technology. The characteristics of Hanok construction were analyzed through quantitative criteria to define the main development tasks for Hanok development to propose the long-term development path.

  • PDF

An Improved Scheme of Evaluation Process in the Advanced Construction Technology Endorsement System (건설신기술 지정제도의 평가프로세스 개선방안)

  • Tae Yong-Ho;Park Chan-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.363-366
    • /
    • 2002
  • The advanced construction technology endorsement system(ACTES) has used the improper evaluation criteria. Because of its insufficiency of quantitative evaluation, it is difficult to attain the objective and fairness. This study used a survey to investigate a actual condition of ACTES. The survey found that ACTES needed a evaluation criteria and a quantitative evaluation method. In addition, This study proposes the evaluation model that uses a discriminant function. The model process consists of several phases that are brain storming, t-test and discriminant function analysis.

  • PDF

A Roadmap Establishment for the Acceptance of Land Development Earthwork Construction Automation Technology (단지조성 토공분야 건설 자동화 기술 도입을 위한 로드맵 수립)

  • Im, Dong Heui;Yun, Hee-Cheon;Kim, Seok-Kyu;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.893-901
    • /
    • 2019
  • Land development is an essential process to provide lands for housing, industrial, and tourism complex. The development and application of construction automation technology in land development construction are, however, not matured yet. Since land development requires massive investment in terms of cost and effort, the benefits of implementing earthwork construction automation technology could also be enormous. As such, the deployment of advanced technology needs to be assessed. In this paper, by investigating domestic and international advanced earthwork technology, 8 candidate technologies to be developed is derived. These technologies are then prioritized using AHP and web-based survey that distributed to experts in the field of civil and infrastructure. As a result, advanced earthwork fleet management platformization and tele-operation systems for unmanned earthwork are identified as the top priority. Besides through sensitivity analysis, the trends of the technology rank by the weight distribution of the evaluation factor is investigated. Consequently, the research and development processes for the earthwork construction automation technology in land development are explored and based on the results, the research and development road map plan is established.

A review on thermochemical pretreatment in Lignocellulosic bioethanol production (목질계 바이오에탄올 제조공정에서 열화학적 전처리에 관한 고찰)

  • Ko, Jae-Jung;Yun, Sang-Leen;Kang, Sung-Won;Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • The production of bioethanol, which is one of the alternative fuel, cause the various problem such as agflation in human society. As a substitute for the feedstock, lignocellulosic biomass have a big potential. However, bioethanol production with cellulosic material is not commercialized due to high cost. Thermochemical pretreatment to improve the rate of enzyme hydrolysis and increase the recovery of fermentable sugar, is required in order to achieve the cost down in bioethanol production. In this study, various problems and technologies for pretreatment is introduced. Acid hydrolysis, alkali hydrolysis, steam explosion, organosolv process, ammonia explosion, and wet oxidation pretreatment remove lignin and hemicellulose, and reduce cellulose crystallinity. Optimization of pretreatment process on various sources of lignocellulosic biomass such as softwood, hardwood, and straw should be performed.

  • PDF

Development of the automatic tunneling algorithm based on fuzzy logic for the microtunneling system

  • Han, Jeong-Su;Do, Jun-Hyeong;Zeungnam Bien;Janghyun Nam;Park, Taedong;Park, Kwang-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.676-678
    • /
    • 2003
  • Microtunneling techniques play a crucial role in the construction of pipelines. This paper shows the automatic tunneling algorithm of microtunneling system using fuzzy logic technology to assist operators to assure the quality of microtunneling construction. To have effective output value of fuzzy controller, we slightly modified the conventional defuzzification methods. The proposed automatic tunneling algorithm shows good tunneling results comparable with those of experts.

  • PDF

Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2 (CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성)

  • Kim, Ha-Seog;Baek, Dae-Hyun;Lee, Sea-Hyun
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.37-46
    • /
    • 2014
  • Carbon dioxide generated from construction materials and construction material industry among the fields of construction is approximately 67 million tons. It is about 30% of the carbon dioxide generated in the fields of construction. In order to reduce carbon dioxide in the fields of construction, it is necessary to control the use of fossil fuel consumed and decrease carbon emission by reducing the secondary and tertiary curing generating carbon dioxide in construction material industry. Therefore, this study manufactured mortar by having cement as the Plain and substituting three binding materials up to 50% and then adopted different curing methods to analyze congelation and strength characteristics. Test results for strength property by changing binding materials showed that specimens with blast furnace slag, CSA 15% and CAMC 5% resulted in positive effect for strength.

Transient Liquid Phase Bonding of Gamma Prime Precipitation Strengthened Ni Based Superalloy (석출강화형 Ni 기 초내열합금의 천이액상확산접합)

  • Kim, Jeong Kil;Park, Hae Ji;Shim, Deog Nam
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.52-61
    • /
    • 2017
  • Transient liquid phase (TLP) bonding is essential technology to repair micro-cracking on the airfoil of blades and vanes for gas turbines. Understanding of the characteristics of TLP bonding of the superalloys is necessary in the application of the technology for repairing these components. In this study, the focus was on investigating TLP bonding characteristics of ${\gamma}^{\prime}$ precipitation strengthened Ni based superalloy. TLP bonding was carried out with an amorphous filler metal in various bonding conditions, and the microstructural characterization was investigated through optical microscopy (OM) and electron probe micro-analysis (EPMA). The experimantal results explained clearly that bonding temperatures had critical effects on the TLP bonding behaviors, and that isothermal solidication of the joints made at higher temperatures than $1170^{\circ}C$ was controlled by Ti diffusion instead of B.

Development of Mobile Device of the Infill Modular Construction System (인필 모듈러 건설시스템의 이동장치 개발)

  • Kim, Chang-Han;Jung, Chan-Woo;Kim, Hyeong-Su;Hwang, Hyun-Jun;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.163-164
    • /
    • 2012
  • Recently new construction system, the Infill Modular Construction System, is being emphasized depending on the industrialized technology introduction and the needs of high-rise housing. In order to applicate the Infill Modular Construction System and activate the domestic market, development of insufficient element technologies against the advanced technologies should be preceded and mobile device development of Infill Unit Module which is differentiated from the existing modular construction systems should be needed urgently. As advanced research for the activation of the Infill Modular Construction System, this research aims to develop Infill Unit Module's mobile device. This is expected to improve the constructability of Infill Unit Module. In addition development of mobile device considering weight of Infill Unit Module and construction errors are being planned.

  • PDF