• Title/Summary/Keyword: Adult stem cells

Search Result 196, Processing Time 0.018 seconds

The Use of Stem Cells as Medical Therapy (줄기세포를 이용한 세포치료법)

  • Son Eun-Hwa;Pyo Suhkneung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.1-11
    • /
    • 2005
  • Recently, there has been extremely active in the research of stem cell biology. Stem cells have excellent potential for being the ultimate source of transplantable cells for many different tissues. Researchers hope to use stem cells to repair or replace diseased or damaged organs, leading to new treatments for human disorders that are currently incurable, including diabetes, spinal cord injury and brain diseases. There are primary sources of stem cells like embryonic stem cells and adult stem cells. Stem cells from embryos were known to give rise to every type of cell. However, embryonic stem cells still have a lot of disadvantages. First, transplanted cells sometimes grow into tumors. Second, the human embryonic stem cells that are available for research would be rejected by a patient's immune system. Tissue-matched transplants could be made by either creating a bank of stem cells from more human embryos, or by cloning a patient's DNA into existing stem cells to customize them. However, this is laborious and ethically contentious. These problems could be overcome by using adult stem cells, taken from a patient, that are treated to remove problems and then put back. Nevertheless, some researchers do not convince that adult stem cells could, like embryonic ones, make every tissue type. Human stem cell research holds enormous potential for contributing to our understanding of fundamental human biology. In this review, we discuss the recent progress in stem cell research and the future therapeutic applications.

Cancer stem cell surface markers on normal stem cells

  • Kim, Won-Tae;Ryu, Chun Jeih
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.285-298
    • /
    • 2017
  • The cancer stem cell (CSC) hypothesis has captured the attention of many scientists. It is believed that elimination of CSCs could possibly eradicate the whole cancer. CSC surface markers provide molecular targeted therapies for various cancers, using therapeutic antibodies specific for the CSC surface markers. Various CSC surface markers have been identified and published. Interestingly, most of the markers used to identify CSCs are derived from surface markers present on human embryonic stem cells (hESCs) or adult stem cells. In this review, we classify the currently known 40 CSC surface markers into 3 different categories, in terms of their expression in hESCs, adult stem cells, and normal tissue cells. Approximately 73% of current CSC surface markers appear to be present on embryonic or adult stem cells, and they are rarely expressed on normal tissue cells. The remaining CSC surface markers are considerably expressed even in normal tissue cells, and some of them have been extensively validated as CSC surface markers by various research groups. We discuss the significance of the categorized CSC surface markers, and provide insight into why surface markers on hESCs are an attractive source to find novel surface markers on CSCs.

Stem cell maintenance by manipulating signaling pathways: past, current and future

  • Chen, Xi;Ye, Shoudong;Ying, Qi-Long
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.668-676
    • /
    • 2015
  • Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways.

Engineered adult stem cells: a promising tool for anti-cancer therapy

  • Youngdong Choi;Hong Kyu Lee;Kyung-Chul Choi
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.71-77
    • /
    • 2023
  • Cancers are one of the most dreaded diseases in human history and have been targeted by numerous trials including surgery, chemotherapy, radiation therapy, and anti-cancer drugs. Adult stem cells (ASCs), which can regenerate tissues and repair damage, have emerged as leading therapeutic candidates due to their homing ability toward tumor foci. Stem cells can precisely target malicious tumors, thereby minimizing the toxicity of normal cells and unfavorable side effects. ASCs, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs), are powerful tools for delivering therapeutic agents to various primary and metastatic cancers. Engineered ASCs act as a bridge between the tumor sites and tumoricidal reagents, producing therapeutic substances such as exosomes, viruses, and anti-cancer proteins encoded by several suicide genes. This review focuses on various anti-cancer therapies implemented via ASCs and summarizes the recent treatment progress and shortcomings.

Endogenous Stem Cells in the Ear (귀에 존재하는 내인성 성체줄기세포)

  • Park, Kyoung Ho
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.56 no.12
    • /
    • pp.749-753
    • /
    • 2013
  • Basically stem cells have characteristics of multi-potency, differentiation into multiple tissue types, and self-renew through proliferation. Recent advances in stem cell biology can make identifying the stem-cell like cells in various mammalian tissues. Stem cells in various tissues can restore damaged tissue. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the tympanic membrane, vestibular system, spiral ganglion, and partly in the organ of Corti. The presence of stem cells in the ear raises the possibilities for the regeneration of the tympanic membrane & inner ear hair cells & neurons. But the gradual loss of stem cells postnatally in the organ of Corti may correlate with the loss of regenerative capacity and limited hearing restoration. Future strategies using endogenous stem cells in the ear can be the another treatment modality for the patients with intractable inner ear diseases.

Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming

  • Su-Jeong Oh;Yoojin Seo;Hyung-Sik Kim
    • International Journal of Stem Cells
    • /
    • v.17 no.3
    • /
    • pp.213-223
    • /
    • 2024
  • Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.

The RUNX1 Enhancer Element eR1: A Versatile Marker for Adult Stem Cells

  • Chuang, Linda Shyue Huey;Osato, Motomi;Ito, Yoshiaki
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.121-125
    • /
    • 2020
  • The identification of adult stem cells is challenging because of the heterogeneity and plasticity of stem cells in different organs. Within the same tissue, stem cells may be highly proliferative, or maintained in a quiescent state and only to be activated after tissue damage. Although various stem cell markers have been successfully identified, there is no universal stem cell marker, which is exclusively expressed in all stem cells. Here, we discuss the roles of master developmental regulator RUNX1 in stem cells and the development of a 270 base pair fragment of the Runx1 enhancer (eR1) for use as stem cell marker. Using eR1 to identify stem cells offers a distinct advantage over gene promoters, which might not be expressed exclusively in stem cells. Moreover, RUNX1 has been strongly implicated in various cancer types, such as leukemia, breast, esophageal, prostate, oral, skin, and ovarian cancers-it has been suggested that RUNX1 dysfunction promotes stem cell dysfunction and proliferation. As tissue stem cells are potential candidates for cancer cells-of-origin and cancer stem cells, we will also discuss the use of eR1 to target oncogenic gene manipulations in stem cells and to track subsequent neoplastic changes.

Neurogenic potentials of human amniotic fluid-derived stem cells according to expression levels of stem cell markers and ingredients of induction medium

  • Lim, Eun Hye;Cho, Jung Ah;Park, Ho;Song, Tae Jong;Kim, Woo Young;Kim, Kye Hyun;Lee, Kyo Won
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • Purpose: We investigated the neurogenic potentials of amniotic fluid-derived stem cells (AFSCs) according to the expression levels of stem cell markers and ingredients in the neural induction media. Materials and Methods: Four samples of AFSCs with different levels of Oct-4 and c-kit expression were differentiated neurally, using three kinds of induction media containing retinoic acid (RA) and/or a mixture of 3-isobutyl-1-methylxanthine/indomethacin/insulin (neuromix), and examined by immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) for their expression of neurospecific markers. Results: The cells in neuromix-containing media displayed small nuclei and long processes that were characteristic of neural cells. RT-PCR analysis revealed that the number of neural markers showing upregulation was greater in cells cultured in the neuromix-containing media than in those cultured in RA-only medium. Neurospecific gene expression was also higher in Oct-4 and c-kit double-positive cells than in c-kit-low or -negative cells. Conclusion: The stem cell marker c-kit (rather than Oct-4) and the ingredient neuromix (rather than RA) exert greater effects on neurogenesis of AFSCs.

Inhibition of Class I Histone Deacetylase Enhances Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells

  • Yukyeong Lee;Seung-Won Lee;Dahee Jeong;Hye Jeong Lee;Na Young Choi;Jin Seok Bang;Seokbeom Ham;Kinarm, Ko
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether selfreprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.

Generation of Cortical Brain Organoid with Vascularization by Assembling with Vascular Spheroid

  • Myung Geun Kook;Seung-Eun Lee;Nari Shin;Dasom Kong;Da-Hyun Kim;Min-Soo Kim;Hyun Kyoung Kang;Soon Won Choi;Kyung-Sun Kang
    • International Journal of Stem Cells
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Background and Objectives: Brain organoids have the potential to improve our understanding of brain development and neurological disease. Despite the importance of brain organoids, the effect of vascularization on brain organoids is largely unknown. The objective of this study is to develop vascularized organoids by assembling vascular spheroids with cerebral organoids. Methods and Results: In this study, vascularized spheroids were generated from non-adherent microwell culture system of human umbilical vein endothelial cells, human dermal fibroblasts and human umbilical cord blood derived mesenchymal stem cells. These vascular spheroids were used for fusion with iPSCs induced cerebral organoids. Immunostaining studies of vascularized organoids demonstrated well organized vascular structures and reduced apoptosis. We showed that the vascularization in cerebral organoids up-regulated the Wnt/β-catenin signaling. Conclusions: We developed vascularized cerebral organoids through assembly of brain organoids with vascular spheroids. This method could not only provide a model to study human cortical development but also represent an opportunity to explore neurological disease.