• 제목/요약/키워드: Adsorption rate

Search Result 1,044, Processing Time 0.024 seconds

Kinetic and Thermodynamic Studies of Brilliant Green Adsorption onto Carbon/Iron Oxide Nanocomposite (탄소/산화철 나노복합재료의 Brilliant Green 흡착에 대한 반응속도론적, 열역학적 연구)

  • Ahmad, Rais;Kumar, Rajeev
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.125-130
    • /
    • 2010
  • In the present work, we have investigated the adsorption efficiency of carbon/iron oxide nanocomposite towards removal of hazardous brilliant green (BG) from aqueous solutions. Carbon/iron oxide nanocomposite was prepared by chemical precipitation and thermal treatment of carbon with ferric nitrate at $750^{\circ}C$. The resulting material was thoroughly characterized by TEM, XRD and TGA. The adsorption studies of BG onto nanocomposite were performed using kinetic and thermodynamic parameters. The adsorption kinetics shows that pseudo-second-order rate equation was fitted better than pseudo-first-order rate equation. The experimental data were analyzed by the Langmuir and Freundlich adsorption isotherms. Equilibrium data was fitted well to the Langmuir model with maximum monolayer adsorption capacity of 64.1 mg/g. The thermodynamic parameters were also deduced for the adsorption of BG onto nanocomposite and the adsorption was found to be spontaneous and endothermic.

Anion Adsorption Properties of Organobentonites Modified by Cationic Polymers (양이온 폴리머를 이용한 유기벤토나이트의 음이온 흡착특성)

  • 윤지해;황진연;이효민;고상모;유장한
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.147-155
    • /
    • 2004
  • Anion adsorption properties of organobentonites modified by two cationic polymers, hexadecyltrimmethylammonium (HDTMA) and cetylpyridinum (CP), were investigated. The organobentonites showed the significant expansion of basal spacing to 42.0 $\AA$ at room temperature. The adsorption experiments were conducted for the 0.2 g of organobentonites with 40 mL solutions of various concentrations of anions such as nitrate, sulfate and phosphate. As a result, the organobentonites showed excellent adsorption capacities for those anions whereas untreated bentonite showed very low adsorption capacity. Adsorption rate of HDTMA-bentonite was about 90% for 100 mg/L solutions of nitrate and phosphate, and that of CP-bentonite was 97% for 100 mg/L solution of nitrate. Adsorption behaviors were slightly different for the different organobentonites and anions. Both organobentonites showed relatively higher adsorption rate for nitrate and phosphate than sulfate. Therefore, these organobentonites showing high anion adsorption capacities can be used far the removal of deleterious anions in the treatment of environmental pollution.

Adsorption and Oxidation of Polychlorinated Phenols onto Transition Metal Oxides (I). Adsorption Characteristics and Reductive Dissolution of ${\sigma}-MnO_2$(s) (전이금속산화물에 대한 다염소치환페놀류의 흡착과 산화 (제 1 보). ${\sigma}-MnO_2$(s)의 흡착특성과 환원성 용해)

  • Jong Hoon Yun;Jong Wan Lim;Heung Lark Lee;Sang Oh Oh;Sun Haing Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.226-232
    • /
    • 1991
  • Adsorption and oxidation of polychlorinated phenols by suspended ${\sigma}-MnO_2$ in aqueous solution have been studied. Of the proposed mechanism, adsorption reaction of chlorophenols onto ${\sigma}-MnO_2$(s) depended upon the pH of the solution and the concentration of chlorophenol. Adsorption isotherms showed a reasonably good fit to the Langmuir isotherm. From the pH dependence of adsorption partition coefficient and the linear relationship between octanol-water partition coefficient and adsorption partiton coefficient of chlorophenol, it is estimated that adsorption is dominated by its hydrophobicity. The rate of electron transfer reaction evaluated from the rate of reductive dissolution of ${\sigma}-MnO_2$(s) depended linearly upon the concentration of chlorophenol and the pH of medium. Observed rate constants ($K_0$) of the meta-substituted chlorophenol were lower than that of the ortho-or para-chlorophenol because of resonance effect of chlorophenoxy radical. It is indicated that this radical is produced in the adsorption process and the electron transfer reaction is rate determining.

  • PDF

Behaviour of Acidic Gases(SOx, NOx) Adsorption on Aminated PP-g-AAc Ultrafine Fibrous Ion Exchanger (아민화 PP-g-AAc 초극세 이온교환섬유의 산성가스(SOx, NOx) 흡착거동)

  • Choi, Yong-Jae;Choi, Kuk-Jong;Lee, Chang-Soo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • In this study, the behaviour of $SO_2$ and $NO_2$ adsorption on aminated ultrafine fibrous PP-g-AAc ion exchanger was investigated, The amount of adsorbed $SO_2$ increased with increasing the initial concentration of $SO_2$. The adsorption breakthrough time in the low concentration of $SO_2$ was faster than high concentration. The adsorption breakthrough occurred within 60 min. Approximately 80% of $SO_2$ was adsorbed below 100 ppm $SO_2$ and 90% of $SO_2$ over 100 ppm $SO_2$ respectively. The selective adsorption rate for $NO_2$ was lower than that of $SO_2$. The adsorption rate for $SO_2$ was decreased with increasing flow rate and that of $NO_2$ was 60%. The breakthrough occurred within 60 min. The adsorption rate for $SO_2$ was 92% in the 250 mL/g water content. Isotherm adsorption model for $SO_2$ was close to the Langmuir rather than Freundlich model.

Adsorption Characteristics of Lithium Ion by Zeolite Modified in K+, Na+, Mg2+, Ca2+, and Al3+ Forms (양이온 K+, Na+, Mg2+, Ca2+, Al3+ 형태로 개질한 제올라이트에 의한 리튬 이온의 흡착 특성)

  • Park, Jeong-Min;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1651-1660
    • /
    • 2013
  • The adsorption of lithium ion onto zeolite was investigated depending on contact time, initial concentration, cation forms, pH, and adsorption isotherms by employing batch adsorption experiment. The zeolite was converted into different forms such $K^+$, $Na^+$, $Mg^{2+}$, $Ca^{2+}$, and $Al^{3+}$. The zeolite had the higher adsorption capacity of lithium ion in $K^+$ form followed by $Na^+$, $Ca^{2+}$, $Mg^{2+}$, and $Al^{3+}$ forms, which was in accordance with their elctronegativities. The lithium ion adsorption was explained using the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms and kinetic models. Adsorption rate of lithium ion by zeolite modified in $K^+$ form was controlled by pseudo-second-order and particle diffusion kinetic models. The maximum adsorption capacity obtained from Langmuir isotherm was 17.0 mg/g for zeolite modified in $K^+$ form. The solution pH influenced significantly the lithium ions adsorption capacity and best results were obtained at pH 5-10.

Variation of Copper and Zinc-Ion Adsorption Capacity via Zeolitification of Jeju Scoria (제주 스코리아의 제올라이트화에 따른 구리와 아연 이온의 흡착 용량 변화)

  • Chang-Han Lee;Sang-Kyu, Kam;Chul-Goo Hu
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.563-572
    • /
    • 2023
  • Scoria from Jeju-island (Jeju scoria) was converted into zeolitic material (Z-SA) via zeolitification using the fusion/hydrothermal method. Jeju scoria could be synthesized into Z-SA to from a surface covered with Na-A zeolite crystals, which was confirmed through an analysis of X-ray diffraction peak patterns and scanning electron microscopy images. Jeju scoria and Z-SA were employed as adsorbents to evaluate the adsorption rate and adsorption capacities for Cu2+ and Zn2+ ions. The adsorption rates and isothermal adsorption capacities could be well fitted by the pseudo-quadratic adsorption kinetics and Langmuir adsorption isotherm, respectively. The maximum adsorption capacities (qm) of Z-SA for Cu2+ and Zn2+ ions were found to be 163.36 mg/g and 120.51 mg/g, respectively, using the Langmuir adsorption isotherm. When Z-SA is synthesized from Jeju scoria via zeolitification using the fusion/hydrothermal method, Z-SA exhibits an adsorption capacity that is more than approximately 100 times the value exhibited by Jeju scoria. As a result, the synthesized Z-SA was regarded as an effective, economic adsorbent.

Adsorption Removal of Eosin Y by Granular Activated Carbon (입자상 활성탄에 의한 Eosin Y의 홉착제거)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2010
  • Eosin Y is used a colorant and dye but eosin Y is harmful toxic substance. In this study, the adsorption characteristics of granular activated carbon have been investigated for the adsorption of eosin dye dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of eosin by a fixed amount of activated carbon have been studied in batch adsorber and fixed bed. The adsorptivity of activated carbon for eosin Y were largely improved by pH control. When the pH was 3 in the sample, the eosin Y could be removed 99% of initial concentration (10 mg/L). The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 293 to 333 K. The estimated values of k and ${\beta}$ are 19.56-134.62, 0.442-0.678, respectively. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet eosin Y concentration is increased from 10 to 30 mg/L, the corresponding adsorption breaktime appears to decrease from 470 to 268 min at bed height of 3 cm and a constant flow rate of 2 g/min. When the initial eosin Y flow rate is increased from 1 to 3 g/min, the corresponding adsorption breaktime appears to decrease from 272 to 140 min at bed height of 3 cm and inlet concentration of 10 mg/L. Also, breaktime increased with increasing bed height at flow rate of 2 g/min and inlet concentration of 10 mg/L. And length of adsorption zone showed similar patterns.

The Removal of Pb by Plants (식물을 이용한 납(Pb) 제거)

  • Cho, Moon-Chul;Lee, Sang-Hwa;Park, Young-Seek;Suh, Kuen-Hack;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.269-273
    • /
    • 2001
  • Biosorption of Pb was evaluated for plants, Persicaria chinensis, Oenanthe javanica and Salvinia natnas. The adsorption equilibrium was reached in about 1hr for Pb and the highest adsorption capacity was 150mg Pb/g biomass at S.natans. Pb adsorption process showed a pseudo second order irreversible reaction. The highest initial adsorption rate was 2000mg pb/g biomass/hr at O.javanica. In spite of pH variation, Pb adsorption capacity by was selection, Pb was selectively adsorved. The selectivity of mixture solution showed the adsorption order of Pb>Cu>Cr>Cd. The Pb adsorption capacity of P. chinensis pretreated with NaOH was increased by 30% in comparison with that of no treatment.

  • PDF

Removal of Halocarbonanted Volatile Organic Compounds by Adsorption Technology (흡착법을 이용한 염소계 휘발성 유기화합물의 제거)

  • 김승재;조성용;김태영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2001
  • Adsorption isotherms of dichloromethane and 1, 1, 2-trichloro-1,2,2-trifluoroethane on an activated carbon pellet, Norit B4, were studied. For these chemicals, Sips equation gave the best fit for the single component adsorption isotherm. The adsorption affinity on activated carbon was greater for dichloromethane than that of 1, 1, 2-trichloro-1,2,2-trifluoroethane. An experimental and theoretical study was made for the adsorption of dichloromethane and 1, 1,2-trichloro-1,2,2-trifluoroethane in a fixed bed. Experimental results were used to examine the effect of operation variables, such as feed concentration, flow rate and bed height. Intraparticle diffusion was able to be explained by surface diffusion mechanism. An adsorption model baked on the linear driving force approximation (LDFA) was found to be applicable to fit the experimental data.

  • PDF

Adsorption Characteristics of Volatile Organic Compounds-BTX on Activated Carbon Fiber (활성탄소섬유를 이용한 휘발성유기화합물 (VOCs-BTX)의 흡착특성)

  • 김한수;박영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.805-812
    • /
    • 1999
  • Adsorption characteristics of volatile organic compounds(VOCs) by activated carbon fiber(ACF) were investigated using a continuous system for benzene, toluene, xylene(BTX) generation. Studied characteristics for adsorption were equilibrium capacity, accumulative adsorption, and breakthrough curve. Operating variables were adsorption temperature(25~45$^{\circ}C$) and partial pressure(1.2~12 mmHg) of BTX. The experimental results show that the adsorption equilibrium capacity increases with increasing partial pressure of BTX and decreases with increasing temperature. It was also found that the break point was decreased with increasing partial pressure, temperature and gas flow rate due to an effect of mass transfer of adsorbate.

  • PDF