• Title/Summary/Keyword: Adsorption model

Search Result 898, Processing Time 0.028 seconds

Novel adsorption model of filtration process in polycarbonate track-etched membrane: Comparative study

  • Adda, Asma;Hanini, Salah;Abbas, Mohamed;Sediri, Meriem
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.479-487
    • /
    • 2020
  • Current assumptions are used in the formulation of pseudo-first (PFO) and second-order (PSO) models to describe the kinetic data of filtration based on ideal operating conditions. This paper presents a new model developed with pseudo nth order and based on real assumption. A comparison was performed between PFO, PSO and the new model to highlight their performance and the optimisation of the pseudo-order equation, using MATLAB software. Adsorption characteristic of bovine serum albumin adsorption on the track-etched membrane are used as a medium based on protein filtration data were extracted from the literature for different concentrations to demonstrate the comparison between PFO/PSO and the new model. The pseudo first and second-order kinetic models were applied to test the experimental data and they did not provide reasonable values. The results show that the predicted values are consistent with experimental values giving a good correlation coefficient R2 = 0.997 and a minimum root mean squared error RMSE = 0.0171. Indeed, the experimental results follow the new model and the optimal pseudo equation order n = 1.115, the most suitable curves for the new model. As a result, we used different experimental adsorption data from the literature to examine and check the applicability and validity of the model.

Adsorption isotherm on the heterogeneous surface with spatially uneven periodic adsorption heat distribution (요철형 공간주기성을 갖는 Heterogeneous 표면 흡착열분포에 대한 흡착등온식)

  • 김철호;황보승
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.115-119
    • /
    • 2002
  • An adsorption isotherm on the heterogeneous surface which has spatially periodic adsorption heat distribution was formalized. Usefulness of the formalized adsorption isotherm is discussed with the help of a model calculation. Statistical thermodynamics is used throughout.

Adsorption of PCBs in Transformer Oil on Powder Activated Carbon and Synthetic Zeolite (활성탄과 합성 제올라이트를 이용한 폐절연유 내 PCBs 흡착)

  • Chu, Heon-Jik;Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.573-578
    • /
    • 2012
  • In this study, adsorption of polychlorinated biphenyls(PCBs) in transformer oil on powder activated carbon (PAC) and synthetic zeolite was evaluated. Adsorption characteristics of PCBs on the PAC and zeolite has been investigated in a batch system with respect to adsorbents amount and contact time. BET results showed 908 m2/g for PAC and 483 m2/g for zeolite. The adsorption capacity of PCBs increased with an increasing input amount of absorbent. The adsorption experimental results showed that PAC removed 90% of input PCBs in transformer oil while zeolite removed only 64%. Adsorption of PCBs to PAC and zeolite fit the Freundlich model well. The Freundlich parameter, Kf, for PAC and zeolite was 193.1 and 43.0 respectively, indicating that PAC is effect adsorbent for PCBs adsorption in transformer oil.

Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance

  • Yao, Jun;Kong, Qingna;Zhu, Huayue;Zhang, Zhen;Long, Yuyang;Shen, Dongsheng
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.503-508
    • /
    • 2015
  • The adsorption characteristics of ammonia on MSWI bottom ash were investigated. The effect of the variation of the landfill environmental parameters including pH, anions and organic matter on the adsorption process was discussed. Results showed that the adsorption could be well described by pseudo-second-order kinetics and Langmuir model, with a maximum adsorption capacity of 156.2 mg/g. The optimum adsorption of ammonia was observed when the pH was 6.0. High level of ion and organic matter could restrict the adsorption to a low level. The above results suggested that MSWI bottom ash could affect the migration of ammonia in the landfill, which is related to the variation of the landfill circumstance.

Optimization of methylene blue adsorption by pumice powder

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • The main objective of this study is to evaluate adsorptive removal of Methylene Blue (MB) dye from aqueous solution using pumice powder. The effects of pH, adsorption time, agitation speed, adsorbent dose, and dye concentrations on dye adsorption were investigated. Process kinetics and isotherm model constants were determined accordingly. The results showed that adsorbent dose, dye concentration and agitation speed are the important parameters on dye adsorption and the removal of MB did not significantly change by varying pH. A total adsorption process time of 60 min was observed to be sufficient to effectively remove 50 mg/L MB concentration. The MB adsorption data obeyed both pseudo first order and second order kinetic models. Adsorption of MB by pumice fitted well both Langmiur and Freundlich isotherms ($R^2{\geq}0.9700$), except for 150 rpm agitation speed that system fitted only Langmiur isotherm. The results of this study emphasize that pumice powder can be used as a low cost and effective adsorbent for dye removal.

Adsorption Characteristics of Anionic Dye by Fe-Decorated Biochar Derived from Fallen Leaves (철 함침 낙엽 Biochar에 의한 음이온성 염료의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.289-296
    • /
    • 2020
  • BACKGROUND: There is a need for a revolutionary method to overcome the problem of biochar, which has relatively low adsorption capacity for existing anion pollutants, along with collectively recycling fallen leaves, a kind of forest by-product. Therefore, the objective of this study was to prepare iron-decorated biochar derived from fallen leaves (Fe-FLB), and to evaluate their adsorption properties to Congo red (CR) as anionic dye. METHODS AND RESULTS: The adsorption properties of CR by fallen leaves biochar (FLB) and Fe-FLB were performed under various conditions such as initial CR concentration, reaction time, pH and dosage with isotherm and kinetic models. In this study, Fe-FLB prepared through iron impregnation and pyrolysis of fallen leaves contained 56.9% carbon and 6.3% iron. Congo red adsorption by FLB and Fe-FLB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of FLB and Fe-FLB were 1.1 mg/g and 25.6 mg/g, respectively. In particular, it was found that the adsorption of CR was occurred by chemical adsorption process by the outer boundary layer of Fe-FLB. CONCLUSION: Overall, the production of Fe-FLB using fallen leaves and using it as an anion adsorbent is considered to be a way to overcome the problem of biochar with relatively low anion adsorption in addition to the reduction effect of waste.

Adsorption Characteristics of Toluene in the Adsorption Bed Packed with Activated Carbon Fiber (활성탄소섬유 흡착bed에서의 톨루엔 흡착특성)

  • Kim, Sang-Guk;Chang, Ye-Rim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.220-228
    • /
    • 2008
  • Toluene adsorption characteristics in the adsorption bed packed with activated carbon fiber (ACF) were studied. Experimental apparatus is composed of VOC generation equipment, adsorption bed, and analytical instrument. Breakthrough characteristics were investigated with length of the adsorption bed which consisted of 3 or 5 sheets of the ACF and flow rate when toluene concentration are 400 ppm and 800 ppm respectively. When mass transfer zone (MTZ) comes out of the adsorption bed, toluene concentration is increased sharply and reached plateau region by saturation. Experimental results are compared with semi-empirical gas adsorption model proposed by Yoon and Nelson. In order to investigate the movement of the MTZ with adsorption time in the adsorption bed packed with ACFs, weight increment of each ACF was measured with the location of ACF at each run. When the weight increment of ACF by toluene adsorption which located at the exit of the bed reaches about 20%, toluene started to be detected.

Adsorption of Non-degradable Eosin Y by Activated Carbon (활성탄에 의한 난분해성 염료인 Eosin Y의 흡착)

  • Lee, Min-Gyu;Kam, Sang-Kyu;Suh, Keun-Hak
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.623-631
    • /
    • 2012
  • The adsorption behavior of Eosin Y on activated carbon (AC) in batch system was investigated. The adsorption isotherm could be well fitted by the Langmuir adsorption equation. The kinetics of adsorption followed the pseudo-second-order model. The temperature variation was used to evaluate the values of free energy (${\Delta}G^{\circ}$), enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$). The positive value of enthalpy change ${\Delta}H^{\circ}$ for the process confirms the endothermic nature of the process and more favourable at higher temperature, the positive entropy of adsorption ${\Delta}S^{\circ}$ reflects the affinity of the AC material toward Eosin Y and the negative free energy values ${\Delta}G^{\circ}$ indicate that the adsorption process is spontaneous. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size. With the increase of the amount of AC, removal efficiency of Eosin Y was increased, but adsorption capacity was decreased. And adsorption capacity was increased with the decrease of particle size.

Comparisons of Adsorption-Desorption Characteristics of Major 10 Kinds Components Consisting of Gasoline Vapor (유증기를 구성하는 주요 10종류 성분의 온도에 따른 흡·탈착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1593-1600
    • /
    • 2014
  • Adsorption and desorption characteristics of the representative 10 kinds components consisting of gasoline vapor on activated carbon were investigated at the temperature range of $-30^{\circ}C{\sim}25^{\circ}C$. The breakthrough curves of each vapors obtained by the Thomas model were well described the breakthrough experimental results of this study. The breakthrough times of each vapors were correlated with the molecular weight, density, and vapor pressure. The breakthrough times had greater correlation with boiling point than molecular weight and density. The slope of the breakthrough curve was a proportional relationship with the rate constant (k) of Thomas model expression. The higher the slope of the breakthrough curve, the rate constant was larger. The biggest slope vapor had the smallest adsorption capacity ($q_e$). Adsorption and desorption characteristics of mixed vapor similar to the gasoline vapor were studied at room temperature ($25^{\circ}C$). The mixed vapor consisting of 9 components; group A (pentane, hexene, hexane), group B (benzene, toluene), group C (octane, ethylbenzene, xylene, nonane) was examined. Group A was not nearly adsorbed because of substitution by group C, and the desorption capacity of group A was smaller than group C. The adsorbed substances were confirmed to be Group C.

Adsorption of Cu(II) from Aqueous Solutions Using Pinus densiflora Wood (Pinus densiflora 목질을 이용한 수용액 중의 Cu(II) 흡착)

  • Park, Se-Keun;Kim, Ha-Na;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • Milled Korean pine (Pinus densiflora) wood was used to evaluate its adsorption capacity of Cu(II) ions from aqueous solution by running a series of batch experiments. Prior to the tests, the milled woods were pretreated with 1N NaOH, 1N $NHO_3$, and distilled water, respectively, to examine the effect of pretreatment. Within the tested pH range in this study between 3 and 6, copper adsorption efficiency of NaOH-treated wood(96~99%) was superior than $NHO_3$-treated wood(19~31%) and distilled water-treated wood(18~35%). Adsorption behavior of copper onto both raw and $NHO_3$-treated woods was mainly attributed to interaction with carboxylic acid group. For NaOH-treated wood, carboxylate ion produced by hydrolysis was a major functional group responsible for Cu sorption. NaOH treatment of wood changed the ester and carboxylic acid groups into carboxylate group, whereas $NHO_3$ treatment did not affect the production of functional groups which could bind copper. A pseudo second-order kinetic model fitted well for the sorption of copper ion onto NaOH-treated wood. A batch isotherm test using NaOH-treated wood showed that equilibrium sorption data were better represented by the Langmuir model than the Freundlich model.