• 제목/요약/키워드: Adsorption material

검색결과 709건 처리시간 0.023초

산업폐기물로부터 합성된 제올라이트 물질의 망간 이온 흡착속도 및 등온흡착 특성 (Adsorption Kinetic and Isotherm Characteristics of Mn Ions with Zeolitic Materials Synthesized from Industrial Solid Waste)

  • 최정학;이창한
    • 한국환경과학회지
    • /
    • 제29권8호
    • /
    • pp.827-835
    • /
    • 2020
  • Zeolite material having XRD peaks of Na-A zeolite in the 2θ range of 7.18 to 34.18 can be synthesized from the waste catalyst using a fusion/hydrothermal method. The adsorption rate of Mn ions by a commercial Na-A zeolite and the synthesized zeolitic material increased as the adsorption temperature increased in the range of 10 ~ 40℃. The adsorption of Mn ion were very rapid in the first 30 min and then reached to the equilibrium state after approximately 60 min. The adsorption kinetics of Mn ions by the commercial Na-A zeolite and the zeolitic material were found to be well fitted to the pseudo-2nd order kinetic model. Equilibrium data by the commercial Na-A zeolite and the zeolitic material fit the Langmuir, Koble-Corrigan, and Redlich-Peterson isotherm models well rather than Freundlich isotherm model. The removal capacity of the Mn ions by the commercial Na-A zeolite and the zeolitic material obtained from the Langmuir model was 135.2 mg/g and 128.9 mg/g at 30℃, respectively. The adsorption capacity of Mn ions by the synthesized zeolitic material was almost similar to that of commercial Na-A zeolite. The synthesized zeolitic material could be applied as an economically feasible commercial adsorbent.

Sequential adsorption - photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon

  • Andriantsiferana, Caroline;Mohamed, Elham Farouk;Delmas, Henri
    • Environmental Engineering Research
    • /
    • 제20권2호
    • /
    • pp.181-189
    • /
    • 2015
  • A composite material was tested to eliminate phenol in aqueous solution combining adsorption on activated carbon and photocatalysis with $TiO_2$ in two different ways. A first implementation involved a sequential process with a loop reactor. The aim was to reuse this material as adsorbent several times with in situ photocatalytic regeneration. This process alternated a step of adsorption in the dark and a step of photocatalytic oxidation under UV irradiation with or without $H_2O_2$. Without $H_2O_2$, the composite material was poorly regenerated due to the accumulation of phenol and intermediates in the solution and on $TiO_2$ particles. In presence of $H_2O_2$, the regeneration of the composite material was clearly enhanced. After five consecutive adsorption runs, the amount of eliminated phenol was twice the maximum adsorption capacity. The phenol degradation could be described by a pseudo first-order kinetic model where constants were much higher with $H_2O_2$ (about tenfold) due to additional ${\bullet}OH$ radicals. The second implementation was in a continuous process as with a fixed bed reactor where adsorption and photocatalysis occurred simultaneously. The results were promising as a steady state was reached indicating stabilized behavior for both adsorption and photocatalysis.

실물시험을 통한 흡방습 건축자재의 성능평가 (Performance Evaluation of Water Vapour Adsorption/Desorption Property for a Building Material by Mock up Test)

  • 김혜정;송규동;이윤규
    • KIEAE Journal
    • /
    • 제9권2호
    • /
    • pp.53-58
    • /
    • 2009
  • There are increasing developments and uses of functional building materials are recently developed and introduced to the test method for the materials. Especially, moisture problem has a major role are also being established in indoor air quality problems. The purpose of this study is to evaluate the water vapour adsorption/desorption property of a ceiling material. The variation of the temperature and moisture were measured with the application materials by mock up test based on JIS 1470-1. The result shows that water vapour adsorption/desorption property of ceiling material is appeared in changes of moisture adsorption and desorption in comparison with that of a general ceiling material. Therefore, in case of decreasing and increasing in humidity, these materials can be used as an finishing material to sustain comfort condition.

Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution

  • Choi, Hee-Jeong;Yu, Sung-Whan
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2198-2206
    • /
    • 2018
  • We addressed the development of a novel, low-cost, and high-efficient material from hybrid materials, known as microcapsules. Microcapsules are a composite adsorbent made of a mixture of tannin, sericite and chitosan. The FT-IR analysis showed that the microcapsules contain hydroxyl, carboxyl, carbonyl, and amino groups, which play an important role in the adsorption of heavy metals. The microcapsules were able to remove 99% of Pb(II) in 30 min, and obtained a removal efficiency of more than (13-50)%, compared with the single adsorbents of tannin, chitosan, and sericite. In adsorption kinetic analysis, pseudo-second-order adsorption was more suitable than pseudo-first-order adsorption, and chemical adsorption did not limit the adsorption rate of Pb(II) ion. In isothermal adsorption, Langmuir adsorption was more suitable than Freundlich adsorption, and the maximum Langmuir adsorption capacity was 167.82 (mg/g). Furthermore, desorption and reusability studies, as well as the applicability of the material for wastewater treatment, demonstrated that microcapsules offer a promising hybrid material for the efficient removal of significant water pollutants, i.e., Pb(II) from aqueous solutions.

Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium

  • Khan, Muhammad Imran;Wu, Liang;Mondal, Abhishek N.;Yao, Zilu;Ge, Liang;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • 제7권1호
    • /
    • pp.23-38
    • /
    • 2016
  • Batch adsorption of methyl orange (MO) from aqueous solution using three kinds of anion exchange membranes BI, BIII and DF-120B having different ion exchange capacities (IECs) and water uptakes ($W_R$) was investigated at room temperature. The FTIR spectra of anion exchange membranes was analysed before and after the adsorption of MO dye to investigate the intractions between dye molecules and anion exchange membranes. The effect of various parameters such as contact time, initial dye concentration and molarity of NaCl on the adsorption capacity was studied. The adsorption capacity found to be increased with contact time and initial dye concentration but decreased with ionic strength. The adsorption of MO on BI, BIII and DF-120B followed pseudo-first-order kinetics and the nonlinear forms of Freundlich and Langmuir were used to predict the isotherm parameters. This study demonstrates that anion exchange membranes could be used as useful adsorbents for removal of MO dye from wastewater.

Adsorption Characteristics of Al (III), Ni (II), Sm (III) Ions on Resin with Styrene Hazardous Material in Reinforcement Water Fire Extinguishing Agent

  • Kim, Joon-Tae
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.151-157
    • /
    • 2013
  • The ion exchange resins were synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous material) divinylbenzene (DVB) copolymer with crosslinks of 1%, 6%, and 15% by substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, surface area, and IR-spectrum. The object of this study was to seperate the metal ion absorbed in reinforcement water fire extinguishing agent. As the results of the effects of pH, equilibrium arrival time, and crosslink of synthetic resin on metal ion adsorption for resin adsorbent, the metal ions were showed high adsorption at pH 3 or over and adsorption equilibrium of metal ions was about 2 hours. In addition, adsorption selectivity for the resin in water was the order of Al (III) > Ni (II) > Sm (III) ions, adsorbability of the metal ions was in the crosslinks order of 1%, 6%, and 15%.

한강에서 분리한 이종 coliphage의 동정과 점토질에 대한 흡착 및 용출효과 (Identification of two coliphages from Han-river and its adsorption-elution effect on soil materials)

  • 홍순우;하영칠;안태석;이영숙
    • 미생물학회지
    • /
    • 제20권4호
    • /
    • pp.210-222
    • /
    • 1982
  • Coliphages isolated from Han-River from September 1980 to August 1981 were classified by morphological and physiological characteristics. Effects of soil metrial on the fate of coliphage in nature were investigated. 1. The correlation coefficient between coliphage and E.coli which was host of coliphages in nature was 0.7173 (p=0.004). 2. Coliphage I isolated from Han-River of which DNA molecular weight was $27{\times}10^6$ daltons was identified as $T_1$ phage and coliphage II of which DNA molecular weight $72{\times}10^6$ daltons was classified as $T_5$ phage. 3. Soil material SW was composed of 63.65% silt and 21.92% clay. Clay was consisted of illite, kaolinite and chlorite evenly. Soil material J was composed of 68.92% silt and 11.67% clay. Clay consisted of smectite only. 4. Coliphage was absorbed to soil material J more than soil material SW, and $T_1$ coliphage was absorbed to soil material more than $T_5$ coliphage was. 5. The phage adsorption efficiency to soil material was enhanced at lower pH : the phage adsorption efficiency at pH 4 was 27 time higher than at pH 7. 6. Divalent $(Ca^{2+})\;and\;trivalention\;(Al^{3+})$ enhanced the phage adsorption efficiency to soil material from 4 to 39 and from 17 to 91 times higher than monovalent $ion(Na^+)$, respectively. 7. The concentration of organic compound was inversely related to the phage adsorption efficiency to soil. 8. Adsorption of phage onto soil material, and elution efficiency of elutants was in the order of D.D.W>tap water>river water>seawater. 9. The higher the concentration of organic compound was, the more were adsorbed phages to soil eluted. 10. Coliphages survived longer in sterile soil suspension than in nonsterile soil material suspension.

  • PDF

Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach

  • Moon, Hye Sook;Lee, Ji Hye;Kwon, Soonchul;Kim, Il Tae;Lee, Seung Geol
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.116-120
    • /
    • 2015
  • We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.

Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies

  • Zhang, Yu;Tang, Qiang;Chen, Su;Gu, Fan;Li, Zhenze
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.95-104
    • /
    • 2018
  • Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.

조습제 적용 박물관 전시케이스의 동적 습도조절 특성 해석 (Analysis of Dynamic Humidity Control Characteristics of Museum Showcase with Adsorption Material)

  • 김재용;오명도
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1070-1077
    • /
    • 2003
  • This study was undertaken to judge the quality of air-tightened exhibition cases and to predict the dynamic variation of the relative humidity in the showcase. We performed a lot of experiments for the a few conditions and we numerically calculated the air change rate and the relative humidity in the showcase with the Artsorb under the same conditions. In all cases we confirmed that the numerical results about the relative humidity in the showcase had a good agreement with the experimental ones. Through the experiments of humidity control, we found out that the adsorption efficiency is varied with the location and the amount of the Artsorb. And the numerical results showed that the adsorption material is always needed to keep on the appropriate humidity condition in the showcase even though any kind of the showcases are used.